
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 17

Announcements
• Project 3 Milestone due Friday Oct 24, 11:59pm

– No extensions
• Will return feedback by Monday
• Project 3 Help Session next Monday 6-8pm

– Room McB 209
• Read book chapters 8 and 9 on memory management
• Reminder: need to pass 90% of tests of project 2 by

the end of the semester to pass the class
– All project 2 tests except multi-oom will appear as

regression tests in project 3 and 4
• Tag and branch your CVS for projects 3 and 4 (after

commit, do cvs rtag –b –r working_project2 ….)

10/23/2008CS 3204 Fall 2008 2

Virtual Memory

Paging Techniques

Fault Resumption
• Requires that faulting CPU instruction be restartable

– Most CPUs are designed this way
• Very powerful technique

– Entirely transparent to user program: user program is frozen in
time until OS decides what to do

• Can be used to emulate lots of things

10/23/2008CS 3204 Fall 2008 4

Can be used to emulate lots of things
– Programs that just ignore segmentation violations (!?) (here:

resume with next instruction – retrying would fault again)
– Subpage protection (protect entire page, take fault on access,

check if address was to an valid subpage region)
– Virtual machines (original IBM/360 design was fully virtualizable;

vmware, qemu – run entire OS on top of another OS)
– Garbage collection (detect how recently objects have been

accessed)
– Distributed Shared Memory

Distributed Shared Memory
• Idea: allows accessing other machine’s memory as if it

were local
• Augment page table to be able to keep track of network

locations:
– local virtual address → (remote machine, remote address)

10/23/2008CS 3204 Fall 2008 5

• On page fault, send request for data to owning machine,
receive data, allocate & write to local page, map local
page, and resume
– Process will be able to just use pointers to access all memory

distributed across machines – fully transparent
• Q.: how do you guarantee consistency?

– Lots of options

Heap Growth

kd t
kbss

kheap

C0400000

FFFFFFFF

1
G

B

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process needs memory to
place malloc() objects in

10/23/2008CS 3204 Fall 2008 6

ustack (1)

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata

0

C0000000

3
G

B

used

free

user (1)
user (1)

udata (1)

user (1)

place malloc() objects in

Process calls sbrk(addr)udata (2)

Process faults when
touching new memory

2

mmap()

kd t
kbss

kheap

C0400000

FFFFFFFF
1

G
B

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process opens file, calls
mmap(fd addr)

10/23/2008CS 3204 Fall 2008 7

ustack (1)

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata

0

C0000000

3
G

B

used

free

user (1)
user (1)

udata (1)

user (1)

mmap(fd, addr)

ummap (1)

Process faults when
touching mapped file

Page fault handler allocs
page, maps it, reads
data from disk:

Copy-On-Write
• Sometimes, want to create a copy of a page:

– Example: Unix fork() creates copies of all parent’s pages in the
child

• Optimization:
– Don’t copy pages, copy PTEs – now have 2 PTEs pointing to

frame

10/23/2008CS 3204 Fall 2008 8

– Set all PTEs read-only
– Read accesses succeed
– On Write access, copy the page into new frame, update PTEs to

point to new & old frame
• Looks like each have their own copy, but postpone

actual copying until one is writing the data
– Hope is at most one will ever touch the data – never have to

make actual copy

Lazy Loading & Prefetching
• Typically want to do some prefetching when faulting in

page
– Reduces latency on subsequent faults

• Q.: how many pages? which pages?
– Too much: waste time & space fetching unused pages

10/23/2008CS 3204 Fall 2008 9

– Too little: pay (relatively large) page fault latency too often
• Predict which pages the program will access next (how?)
• Let applications give hints to OS

– If applications knows
– Example: madvise(2)
– Usual conflict: what’s best for application vs what’s best for

system as a whole

Page Eviction
• Suppose page fault occurs, but no free physical frame is there to

allocate
• Must evict frame

– Find victim frame (how – later)
– Find & change old page table entry pointing to the victim frame
– If data in it isn’t already somewhere on disk, write to special area on

disk (“swap space”)

10/23/2008CS 3204 Fall 2008 10

disk (swap space)
– Install in new page table entry
– Resume

• Requires check on page fault if page has been swapped out – fault
in if so

• Some subtleties with locking:
– How do you prevent a process from writing to a page some other

process has chosen to evict from its frame?
– What do you do if a process faults on a page that another process is in

the middle of paging out?

Page Eviction Example
PTE:
process id = ? (if appl.),
virtual addr = ?,
dirty bit = ?,
accessed bit = ?,

Process A needs a frame

10/23/2008CS 3204 Fall 2008 11

victim frame:
phys addr = …

Process A needs a frame
decides it wants this frame
Q.: how will it find the PTE,
if any, that points to it?

Linux uses a so-called “rmap” for that that links frames to PTE

Managing Swap Space
• Continuous region on disk

– Preferably on separate disk, but typically a partition on same
disk

• Different allocation strategies are possible
– Simplest: when page must be evicted, allocate swap space for

page; deallocate when page is paged back in

10/23/2008CS 3204 Fall 2008 12

page; deallocate when page is paged back in
– Or: allocate swap space upfront
– Should page’s position in swap space change? What if same

page is paged out multiple times?
• Can be managed via bitmap 0100100000001

– Free/used bits for each page that can be stored
– Pintos: note 1 page == 8 sectors

3

Locking Frames

• Aka “pinned” or “wired” pages or frames
• If another device outside the CPU (e.g.,

DMA by network controller) accesses a
frame, it cannot be paged out

10/23/2008CS 3204 Fall 2008 13

, p g
– Device driver must tell VM subsystem about

this
• Also useful if you want to avoid a page

fault while kernel code is accessing a user
address, such as during a system call.

Accessing User Pointers & Paging
• Kernel must check that user pointers are valid

– P2: easy, just check range & page table
• Harder when swapping:

– validity of a pointer may change between check & access (if
another process sneaks in and selects frame mapped to an
already checked page for eviction)

P ibl l ti• Possible solution:
– verify & lock,

then access,
then unlock

• (Alternative is to
handle page faults
on user addresses
in kernel mode)

10/23/2008CS 3204 Fall 2008 14

if (verify_user(addr))
process_terminate();

// what if addr’s frame is just now
// swapped out by another process?
*addr = value;

