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CS 3204
Operating Systemsp g y

Godmar Back

Lecture 17

Announcements
• Project 3 Milestone due Friday Oct 24, 11:59pm

– No extensions
• Will return feedback by Monday
• Project 3 Help Session next Monday 6-8pm

– Room McB 209
• Read book chapters 8 and 9 on memory management
• Reminder: need to pass 90% of tests of project 2 by 

the end of the semester to pass the class
– All project 2 tests except multi-oom will appear as 

regression tests in project 3 and 4
• Tag and branch your CVS for projects 3 and 4 (after 

commit, do cvs rtag –b –r working_project2 ….)
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Virtual Memory

Paging Techniques

Fault Resumption
• Requires that faulting CPU instruction be restartable

– Most CPUs are designed this way
• Very powerful technique

– Entirely transparent to user program: user program is frozen in 
time until OS decides what to do

• Can be used to emulate lots of things
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Can be used to emulate lots of things
– Programs that just ignore segmentation violations (!?) (here: 

resume with next instruction – retrying would fault again)
– Subpage protection (protect entire page, take fault on access, 

check if address was to an valid subpage region)
– Virtual machines (original IBM/360 design was fully virtualizable; 

vmware, qemu – run entire OS on top of another OS)
– Garbage collection (detect how recently objects have been 

accessed)
– Distributed Shared Memory

Distributed Shared Memory
• Idea: allows accessing other machine’s memory as if it 

were local
• Augment page table to be able to keep track of network 

locations: 
– local virtual address → (remote machine, remote address)
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• On page fault, send request for data to owning machine, 
receive data, allocate & write to local page, map local 
page, and resume
– Process will be able to just use pointers to access all memory 

distributed across machines – fully transparent
• Q.: how do you guarantee consistency?

– Lots of options

Heap Growth 
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mmap() 
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Copy-On-Write
• Sometimes, want to create a copy of a page:

– Example: Unix fork() creates copies of all parent’s pages in the 
child

• Optimization:
– Don’t copy pages, copy PTEs – now have 2 PTEs pointing to 

frame
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– Set all PTEs read-only
– Read accesses succeed
– On Write access, copy the page into new frame, update PTEs to 

point to new & old frame
• Looks like each have their own copy, but postpone 

actual copying until one is writing the data
– Hope is at most one will ever touch the data – never have to 

make actual copy

Lazy Loading & Prefetching
• Typically want to do some prefetching when faulting in 

page
– Reduces latency on subsequent faults

• Q.: how many pages? which pages?
– Too much: waste time & space fetching unused pages
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– Too little: pay (relatively large) page fault latency too often
• Predict which pages the program will access next (how?)
• Let applications give hints to OS 

– If applications knows
– Example: madvise(2)
– Usual conflict: what’s best for application vs what’s best for 

system as a whole

Page Eviction
• Suppose page fault occurs, but no free physical frame is there to 

allocate
• Must evict frame

– Find victim frame (how – later)
– Find & change old page table entry pointing to the victim frame
– If data in it isn’t already somewhere on disk, write to special area on 

disk (“swap space”)
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disk ( swap space )
– Install in new page table entry
– Resume

• Requires check on page fault if page has been swapped out – fault 
in if so

• Some subtleties with locking:
– How do you prevent a process from writing to a page some other 

process has chosen to evict from its frame?
– What do you do if a process faults on a page that another process is in 

the middle of paging out?

Page Eviction Example
PTE:
process id = ? (if appl.),
virtual addr = ?,
dirty bit = ?, 
accessed bit = ?,

Process A needs a frame
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victim frame:
phys addr = …

Process A needs a frame
decides it wants this frame
Q.: how will it find the PTE,
if any, that points to it?

Linux uses a so-called “rmap” for that that links frames to PTE

Managing Swap Space
• Continuous region on disk

– Preferably on separate disk, but typically a partition on same 
disk

• Different allocation strategies are possible
– Simplest: when page must be evicted, allocate swap space for 

page; deallocate when page is paged back in
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page; deallocate when page is paged back in
– Or: allocate swap space upfront
– Should page’s position in swap space change? What if same 

page is paged out multiple times?
• Can be managed via bitmap 0100100000001

– Free/used bits for each page that can be stored
– Pintos: note 1 page == 8 sectors
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Locking Frames

• Aka “pinned” or “wired” pages or frames
• If another device outside the CPU (e.g., 

DMA by network controller) accesses a 
frame, it cannot be paged out
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– Device driver must tell VM subsystem about 

this
• Also useful if you want to avoid a page 

fault while kernel code is accessing a user 
address, such as during a system call.

Accessing User Pointers & Paging
• Kernel must check that user pointers are valid

– P2: easy, just check range & page table
• Harder when swapping: 

– validity of a pointer may change between check & access (if 
another process sneaks in and selects frame mapped to an 
already checked page for eviction)

P ibl l ti• Possible solution: 
– verify & lock, 

then access, 
then unlock

• (Alternative is to 
handle page faults 
on user addresses 
in kernel mode)
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if (verify_user(addr))
process_terminate();

// what if addr’s frame is just now
// swapped out by another process?
*addr = value;


