CS 3204
Operating Systems

Lecture 17
Godmar Back

—itginia

Announcements

¢ Project 3 Milestone due Friday Oct 24, 11:59pm
— No extensions
* Will return feedback by Monday
« Project 3 Help Session next Monday 6-8pm
— Room McB 209
¢ Read book chapters 8 and 9 on memory management
« Reminder: need to pass 90% of tests of project 2 by
the end of the semester to pass the class
— All project 2 tests except multi-oom will appear as
regression tests in project 3 and 4
* Tag and branch your CVS for projects 3 and 4 (after
commit, do cvs rtag —b —r working_project2)

CS 3204 Fall 2008 10/23/2008 2

Virtual Memory

Paging Techniques

Fault Resumption

* Requires that faulting CPU instruction be restartable
— Most CPUs are designed this way
* Very powerful technique
— Entirely transparent to user program: user program is frozen in
time until OS decides what to do
« Can be used to emulate lots of things
— Programs that just ignore segmentation violations (!?) (here:
resume with next instruction — retrying would fault again)
- Subpa%e protection (protect entire gage, take fault on access,
check if address was to an valid subpage region)
— Virtual machines (original IBM/360 design was fully virtualizable;
vmware, gemu — run entire OS on top of another OS)
Garbage collection (detect how recently objects have been

Distributed Shared Memory

 Idea: allows accessing other machine’s memory as if it
were local

* Augment page table to be able to keep track of network
locations:
— local virtual address — (remote machine, remote address)

* On page fault, send request for data to owning machine,
receive data, allocate & write to local page, map local
page, and resume

— Process will be able to just use pointers to access all memory
distributed across machines — fully transparent

* Q.: how do you guarantee consistency?
— Lots of options

CS 3204 Fall 2008 10/23/2008

accessed)
— Distributed Shared Memory
Vi 1prinia
m.&ch CS 3204 Fall 2008 10/23/2008 4

FFFFFFFF £ |
] Heap Growth
C0400000 Pintos loads the first process ...
om en starts the first
]
—
€0000000_,
m
g — used
a2 Process calls sbrk(addr)
0 — 5
s 204 Fall 2 10/23/2
m-&ch CS 3204 Fall 2008 0/23/2008 6

FFFFFFFF £

o1 mmap()

Pintos loads the first process ...

C0400000

en starts the first

1GB

C0000000

—

3

JS—
P

o _
wm'lbch CS 3204 Fall 2008 10/23/2008 7
—

ustack (1)
toucl mi .
m ummap (1) Page fault han
O] page, maps it, reads used
ucode (1) E

Lazy Loading & Prefetching

« Typically want to do some prefetching when faulting in
page
— Reduces latency on subsequent faults
¢ Q.: how many pages? which pages?
— Too much: waste time & space fetching unused pages
— Too little: pay (relatively large) page fault latency too often
* Predict which pages the program will access next (how?)
» Let applications give hints to OS
— If applications knows
— Example: madvise(2)

— Usual conflict: what's best for application vs what's best for
system as a whole

_‘h@"mlam CS 3204 Fall 2008 10/23/2008 9
=

Page Eviction Example

PTE:

process id = ? (if appl.),
virtual addr = ?,

dirty bit = 2,

accessed bit = ?,

Process A needs a frame l
decides it wants this frame

Q.: how will it find the PTE, —
if any, that points to it?

victim frame:
phys addr = ...

Linux uses a so-called “rmap” for that that links frames to PTE

‘h@“mﬂm CS 3204 Fall 2008 10/23/2008 1
ik

Copy-On-Write

» Sometimes, want to create a copy of a page:

— Example: Unix fork() creates copies of all parent’s pages in the
child

¢ Optimization:
— Don't copy pages, copy PTEs — now have 2 PTEs pointing to
frame
— Setall PTEs read-only
— Read accesses succeed

— On Write access, copy the page into new frame, update PTEs to
point to new & old frame

» Looks like each have their own copy, but postpone
actual copying until one is writing the data

— Hope is at most one will ever touch the data — never have to
make actual copy

p— T ini
w@"wﬂm CS 3204 Fall 2008 10/23/2008 8
&

Page Eviction

* Suppose page fault occurs, but no free physical frame is there to
allocate

* Must evict frame
— Find victim frame (how — later)
— Find & change old page table entry pointing to the victim frame
— Ifdatain it isn't already somewhere on disk, write to special area on
disk (“swap space”)
— Install in new page table entry
— Resume
. _Re_?uires check on page fault if page has been swapped out — fault
inif so
* Some subtleties with locking:
— How do you prevent a process from writing to a page some other
process has chosen to evict from its frame?

— What do you do if a process faults on a page that another process is in
the middle of paging out?

_‘h@"mlam CS 3204 Fall 2008 10/23/2008 10
=

Managing Swap Space

« Continuous region on disk
— Preferably on separate disk, but typically a partition on same
disk
« Different allocation strategies are possible
— Simplest: when page must be evicted, allocate swap space for
page; deallocate when page is paged back in
— Or: allocate swap space upfront
— Should page’s position in swap space change? What if same
page is paged out multiple times?
* Can be managed via bitmap 0100100000001
— Free/used bits for each page that can be stored
— Pintos: note 1 page == 8 sectors

‘h@“mﬂm CS 3204 Fall 2008 10/23/2008 12
ik

Locking Frames Accessing User Pointers & Paging

« Aka “pinned" or “wired” pages or frames « Kernel must check that user pointers are valid
.] — P2: easy, just check range & page table
« If another device outside the CPU (e.g., + Harder when swapping:
— validity of a pointer may change between check & access (if
DMA by network controller) accesses a anoth()e,r progess sneak)é in an%_selects frame mapped to a(n
frame, it cannot be paged out already checked page for eviction)
) i * Possible solution:
— Device driver must tell VM subsystem about — verify & lock,
this then access,
. . then unlock if (verify_user(addr))
« Also useful if you want to avoid a page . g’-;';'i,qga“;egsf ;3“5 process._terminate();
fault while kernel code is accessing a user on User addresses Ihwhat f addrs frame is justnow
. i swapped out by another process?
address, such as during a system call. in kemel mode) sauid =gl

p— T} ini p—— Ti Teal
ngmlam CS 3204 Fall 2008 10/23/2008 13 ngmlam CS 3204 Fall 2008 10/23/2008 14

