
1

CS 3204
Operating Systems

Godmar Back

Lecture 16

10/23/2008CS 3204 Fall 2008 2

Announcements
• Project 3 Milestone due Friday Oct 24, 11:59pm

– No extensions
• Will return by Monday
• Project 3 Help Session next Monday 6-8pm

– Room TBA – check forum
• Read book chapters 8 and 9 on memory

management
• Reminder: need to pass 90% of tests of project 2

by the end of the semester to pass the class
– All project 2 tests except multi-oom will appear as

regression tests in project 3 and 4

Layers in Address Translation

10/23/2008CS 3204 Fall 2008 3

MMUVirtual address Physical address

TLB

Hardware Page Table

OS Data Structures

(Does not exist if
TLB reload is
implemented in software)

updates access/dirty bitsprovides translations

refills TLB updates PTE

adds and updates entries for
resident pages

retrieves feedback about
accesses

keeps track of all virtual
pages for each process,
resident or non-resident

10/23/2008CS 3204 Fall 2008 4

Representing Page Tables

• Choice impacts speed of access vs size
needed to store mapping information:
– Simple arrays (PDP-11, VAX)

• Fast, but required space makes it infeasible for
large, non-continuous address spaces

– Search trees (aka “hierarchical” or “multi-
level” page tables)

– Hash table

10/23/2008CS 3204 Fall 2008 5

Two-level Page Table

• Q.: how many pages are needed in
–Minimum case
–Worst case? (what is the worst case?)

• This is the original page design
on i386

• Next slide provides details
on how address bits index
tree levels

• If address space is sparse,
interior nodes/paths do not exist
(parent contains a NULL)
• Picture shown shows how tree
divides virtual address space
• The kernel virtual pages that
hold the page table information
need not be contiguous

10/23/2008CS 3204 Fall 2008 6

Example: x86 Address Translation

• Two-level page table
• Source: [IA32-v3] 3.7.1

2

10/23/2008CS 3204 Fall 2008 7

Example: x86 Page Table Entry

• Note: if bit 0 is 0 (“page not present”) MMU will
ignore bits 1-31 – OS can use those at will

10/23/2008CS 3204 Fall 2008 8

Page Table Management on Linux

• Interesting history:
– Linux was originally x86 only with 32bit

physical addresses. Its page table matched
the one used by x86 hardware

– Since:
• Linux has been ported to other architectures
• x86 has grown to support 36bit physical addresses

(PAE) – required 3-level page table

• Linux’s now uses 4-level page table to
support 64-bit architectures

10/23/2008CS 3204 Fall 2008 9

Linux Page Tables (2)

• On x86 – hardware == software
– On 32-bit (no PAE) middle directory disappears

• With four-level, “PUD” page upper directory is added (not shown)

10/23/2008CS 3204 Fall 2008 10

Inverted Page Tables

• Alternative to multi-
level page tables –
size is O(physical
memory)

10/23/2008CS 3204 Fall 2008 11

Page Tables - Summary
• Page tables store mapping information from virtual to

physical addresses, or to find non-resident pages
– Input is: process id, current mode (user/kernel) and kind of

access (read/write/execute)
• TLBs cache such mappings
• Page tables are consulted when TLB miss occurs

– Either all software, or in hardware
• OS must maintain its page table(s) and, if hardware TLB

reload is used, the page table (on x86 aka “page
directory + table”) that is consulted by MMU
– These two tables may or may not be one and the same

• The OS page table must have sufficient information to
load a page’s content from disk

Virtual Memory

Paging Techniques

3

10/23/2008CS 3204 Fall 2008 13

Demand paging

• Idea: only keep data in memory that’s being
used
– Needed for virtualization – don’t use up physical

memory for data processes don’t access

• Requires that actual allocation of physical page
frames be delayed until first access

• Many variations
– Lazy loading of text & data, mmapped pages & newly

allocated heap pages
– Copy-on-write

10/23/2008CS 3204 Fall 2008 14

ustack (1)

Lazy Loading

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss
kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process faults when
touching address in data
segment …

stack page was allocated eagerly

data + code pages are noted
in page table, but no physical
frame has been allocated

10/23/2008CS 3204 Fall 2008 15

ustack (2)
ustack (1)

Stack Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss
kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process calls recursive
function or allocates large
local variable

page fault at about here

10/23/2008CS 3204 Fall 2008 16

Microscopic View of Stack Growth
push $ebp
sub $20, $esp
push $eax
push $ebx

0x8000
esp = 0x8004
esp = 0x8000

esp = 0x7FEC
esp = 0x7FE8

intr0e_stub:
…
call page_fault()
…
iret

Page Fault!

void page_fault() {
get fault addr
determine if it’s close to user $esp
Yes: allocate page frame

install page in page table
No: terminate process

}

esp = 0x7FE4

• Can resume after page fault (and unless feip
is changed) this will retry the faulting instruction
(here: push $eax)
– MMU will walk hardware page table again

