
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 15

Announcements
• Project 2 due Oct 20, 11:59pm

– See forum for additional office hours
• Reminder: need to pass 90% of tests of

project 2 by the end of the semester to pass
the class

10/21/2008CS 3204 Fall 2008 2

the class
– That’s all tests (except for possibly multi-doom)
– P2 score will depend on what you pass by the

deadline.
– P2 is a prerequisite for projects 3 and 4 – if you

can’t get all tests to pass by submission deadline,
fix them quickly

Virtual Memory

Virtual Memory

• Is not a “kind” of memory
• Is a technique that combines one or more

of the following concepts:
– Address translation (always)

10/21/2008CS 3204 Fall 2008 4

Address translation (always)
– Paging (not always)
– Protection (not always, but usually)

• Can make storage that isn’t physical
random access memory appear as though
it were

Goals for Virtual Memory

• Virtualization
– Maintain illusion that each process has entire

memory to itself
– Allow processes access to more memory than

10/21/2008CS 3204 Fall 2008 5

Allow processes access to more memory than
is really in the machine (or: sum of all memory
used by all processes > physical memory)

• Protection
– make sure there’s no way for one process to

access another process’s data

Context Switching

Process 1

Process 2

10/21/2008CS 3204 Fall 2008 6

Kernel

user mode

kernel mode

P1 starts P2 starts P1 exits P2 exits

2

Process 1 Active
in user mode

kd t
kbss

kheap

C0400000

FFFFFFFF
1

G
B

(2)
user (2)

P1

10/21/2008CS 3204 Fall 2008 7

ustack (1)

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata

0

C0000000

3
G

B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)

access possible in user mode

Process 1 Active
in kernel mode

kd t
kbss

kheap

C0400000

FFFFFFFF

1
G

B

(2)
user (2)

access requires kernel mode

P1

10/21/2008CS 3204 Fall 2008 8

ustack (1)

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata

0

C0000000

3
G

B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)

access possible in user mode

Process 2 Active
in kernel mode

kd t
kbss

kheap

C0400000

FFFFFFFF

1
G

B

(2)
user (2)

access requires kernel mode

P2

10/21/2008CS 3204 Fall 2008 9

ustack (2)

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata

0

C0000000

3
G

B

used

freeuser (2)
user (2)

udata (2)

access possible in user mode

Process 2 Active
in user mode

kd t
kbss

kheap

C0400000

FFFFFFFF

1
G

B

(2)
user (2)

P2

10/21/2008CS 3204 Fall 2008 10

ustack (2)

kernel
kernel
kernel
kernel

user (1)
user (1)
user (1)

ucode (2)

kcode
kdata

0

C0000000

3
G

B

used

freeuser (2)
user (2)

udata (2)

access possible in user mode

Page Tables
• How are the arrows in previous pictures

represented?
– Page Table: mathematical function “Trans”

Trans:
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

10/21/2008CS 3204 Fall 2008 11

• Typically (though not on all architectures) have
– Trans(pi, va, user, *) = Trans(pi, va, kernel, *)

OR
Trans(pi, va, user, *) = INVALID

– E.g., user virtual addresses can be accessed in
kernel mode

→ { Physical Addresses } ∪ { INVALID }

Sharing Variations
• We get user-level sharing between processes p1 and p2 if

– Trans(p1, va, user, *) = Trans(p2, va, user, *)
• Shared physical address doesn’t need to be mapped at

same virtual address, could be mapped at va in p1 and vb in
p2:
– Trans(p1, va, user, *) = Trans(p2, vb, user, *)

10/21/2008CS 3204 Fall 2008 12

• Can also map with different permissions: say p1 can read &
write, p2 can only read
– Trans(p1, va, user, {read, write}) = Trans(p2, vb, user, {read})

• In Pintos (and many OS) the kernel virtual address space
is shared among all processes & mapped at the same
address:
– Trans(pi, va, kernel, *) = Trans(pk, va, kernel, *) for all processes pi

and pk and va in [0xC0000000, 0xFFFFFFFF]

3

Per-Process Page Tables
• Can either keep track of all mappings in a single

table, or can split information between tables
– one for each process
– mathematically: a projection onto a single process

• For each process pi define a function PTransi as p p
– PTransi (va, *, *) = Trans(pi, va, user, *)

• Implementation: associate representation of this
function with PCB, e.g., per-process hash table
– Entries are called “page table entries” or PTEs

• Nice side-effect:
– reduced need for synchronization if every process

only adds/removes entries to its own page table
10/21/2008CS 3204 Fall 2008 13

Per-Process Page Tables (2)

• Common misconception
– “User processes use ‘user page table’ and kernel

uses ‘kernel page table’” – as if those were two tables
• Not so (on x86): mode switch (interrupt, system

10/21/2008CS 3204 Fall 2008 14

call) does not change the page table that is used
– It only “activates” those entries that require kernel

mode within the current process’s page table
• Consequence: kernel code also cannot access

user addresses that aren’t mapped

Non-Resident Pages

• When implementing virtual memory, some
of a process’s pages may be swapped out
– Or may not yet have been faulted in

Need to record that in page table:

10/21/2008CS 3204 Fall 2008 15

• Need to record that in page table:

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × ℘({ read, write, execute })

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

Implementing Page Tables

• Many, many variations possible
• Done in combination of hardware &

software
– Hardware part: dictated by architecture

10/21/2008CS 3204 Fall 2008 16

Hardware part: dictated by architecture
– Software part: up to OS designer

• Machine-dependent layer that implements
architectural constraints (what hardware expects)

• Machine-independent layer that manages page
tables

• Must understand how TLB works first

Page Tables Function & TLB

• For each combination (process id, virtual_addr,
mode, type of access) must decide

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × { read, write, execute }

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

10/21/2008CS 3204 Fall 2008 17

– If access is permitted
– If permitted:

• if page is resident, use physical address
• if page is non-resident, page table has information on how to

get the page in memory
• CPU uses TLB for actual translation – page

table feeds the TLB on a TLB miss

TLB

10/21/2008CS 3204 Fall 2008 18

4

TLB: Translation Look-Aside Buffer
• Virtual-to-physical translation is part of every

instruction (why not only load/store instructions?)
– Thus must execute at CPU pipeline speed

• TLB caches a number of translations in fast,
fully-associative memory
– typical: 95% hit rate (locality of reference principle)

10/21/2008CS 3204 Fall 2008 19

typical: 95% hit rate (locality of reference principle)
0xC0002345

0x00002345

Perm VPN PPN

RWX K 0xC0000 0x00000

RWX K 0xC0001 0x00001

R-X K 0xC0002 0x00002

R-- K 0xC0003 0x00003

… … …

TLBTLB

VPN: Virtual Page Number

PPN: Physical Page Number

Offset

TLB Management
• Note: on previous slide example, TLB entries did

not have a process id
– As is true for x86

• Then: if process changes, some or all TLB
entries may become invalid

10/21/2008CS 3204 Fall 2008 20

entries may become invalid
– X86: flush entire TLB on process switch (refilling adds

to cost!)
• Some architectures store process id in TLB entry

(MIPS)
– Flushing (some) entries only necessary when process

id reused

Address Translation & TLB
Virtual Address

TLB Lookup

Check Permissions
Page Table Walk

miss hit

restart instruction

done in hardware

done in OS software

done in software
or hardwaremachine-dependent

10/21/2008CS 3204 Fall 2008 21

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Fault Exception
“Page Not Present”

TLB Reload

Terminate Process

page present else okdenied

Load Page

machine-independent
logic

TLB Reloaded
• TLB small: typically only caches 64-2,048 entries

– What happens on a miss? – must consult (“walk”)
page table – TLB Reload or Refill

• TLB Reload in software (MIPS)
– Via TLB miss handlers – OS designer can pick any

10/21/2008CS 3204 Fall 2008 22

g p y
page table layout – page table is only read & written
by OS

• TLB Reload in hardware (x86)
– Hardware & software must agree on page table layout

inasmuch as TLB miss handling is concerned – page
table is read by CPU, written by OS

• Some architectures allow either (PPC)

Page Tables vs TLB Consistency
• No matter which method is used, OS must ensure that

TLB & page tables are consistent
– On multiprocessor, this may require “TLB shootdown”

• For software-reloaded TLB: relatively easy
– TLB will only contain what OS handlers place into it

• For hardware-reloaded TLB: two choices

10/21/2008CS 3204 Fall 2008 23

• For hardware-reloaded TLB: two choices
– Use same data structures for page table walk & page loading

(hardware designers reserved bits for OS’s use in page table)
– Use a layer on top (facilitates machine-independent

implementation) – this is the recommended approach for Pintos
Project 3

• In this case, must update actual page table (on x86: “page
directory”) that is consulted by MMU during page table walk

• Code is already written for you in pagedir.c

Hardware/Software Split in Pintos

Machine-independent Layer:
your code & data structures
“supplemental page table”

10/21/2008CS 3204 Fall 2008 24

CPU cr3

Machine-dependent Layer:
pagedir.c code

