
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 14

CPU Scheduling

Part II

Case Study: 2.6 Linux Scheduler
(pre 2.6.23)

• Variant of MLFQS
• 140 priorities

– 0-99 “realtime”
– 100-140 nonrealtime

100

120

140
Processes
scheduled
based on
dynamic
priority
SCHED_OTHER

nice=0

nice=19

nice=-20

CS 3204 Fall 2008 3

• Dynamic priority
computed from static
priority (nice) plus
“interactivity bonus”

0

“Realtime”
processes
scheduled
based on
static priority
SCHED_FIFO
SCHED_RR

Linux Scheduler (2)

• Instead of recomputation loop, recompute
priority at end of each timeslice
– dyn_prio = nice + interactivity bonus (-5…5)

Interactivity bonus depends on sleep avg

CS 3204 Fall 2008 4

• Interactivity bonus depends on sleep_avg
– measures time a process was blocked

• 2 priority arrays (“active” & “expired”) in
each runqueue (Linux calls ready queues
“runqueue”)

Linux Scheduler (3)
struct prio_array {

unsigned int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};
typedef struct prio_array prio_array_t;

/* fi d th hi h t i it d th d */

/* Per CPU runqueue */
struct runqueue {
prio_array_t *active;
prio_array_t *expired;
prio_array_t arrays[2];
…
}

CS 3204 Fall 2008 5

/* find the highest-priority ready thread */
idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;
next = list_entry(queue->next, task_t, run_list);

• Finds highest-priority ready thread quickly
• Switching active & expired arrays at end of epoch is

simple pointer swap (“O(1)” claim)

Linux Timeslice Computation

• Linux scales static priority to timeslice
– Nice [-20 … 0 … 19] maps to

[800ms … 100 ms … 5ms]
• Various tweaks:

CS 3204 Fall 2008 6

– “interactive processes” are reinserted into
active array even after timeslice expires

• Unless processes in expired array are starving
– processes with long timeslices are round-

robin’d with other of equal priority at sub-
timeslice granularity

2

Proportional Share Scheduling
• Aka “Fair-Share” Scheduling
• None of algorithms discussed so far provide a

direct way of assigning CPU shares
– E.g., give 30% of CPU to process A, 70% to process

B

CS 3204 Fall 2008 7

B
• Proportional Share algorithms do by assigning

“tickets” or “shares” to processes
– Process get to use resource in proportion of their

shares to total number of shares
• Lottery Scheduling, Weighted Fair

Queuing/Stride Scheduling [Waldspurger 1995]

Lottery Scheduling
• Idea: number tickets between 1…N

– every process gets pi tickets according to importance
– process 1 gets tickets [1… p1-1]
– process 2 gets tickets [p1… p1+p2-1] and so on.

S h d li d i i• Scheduling decision:
– Hold a lottery and draw ticket, holder gets to run for

next time slice
• Nondeterministic algorithm
• Q.: how to implement priority donation?

CS 3204 Fall 2008 8

Weighted Fair Queuing
• Uses ‘per process’ virtual time
• Increments process’s virtual time by a “stride”

after each quantum, which is defined as
(process_share)-1

• Choose process with lowest virtual finishing• Choose process with lowest virtual finishing
time
– ‘virtual finishing time’ is virtual time + stride

• Also known as stride scheduling
• Linux now implements a variant of

WFQ/Stride Scheduling as its “CFS”
completely fair scheduler

CS 3204 Fall 2008 9

WFQ Example (A=3, B=2, C=1)
Ready Queue is sorted by Virtual Finish Time

(Virtual Time at end of quantum if a process were scheduled)

Time Task A Task B Task C Ready Queue
Who
Runs

One
scheduling
epoch.
A ran 3 out

0 1/3 1/2 1 A (1/3) B (1/2) C (1) A

1 2/3 1/2 1 B (1/2) A (2/3) C (1) B
of 6 quanta,
B 2 out of 6,
C 1 out of 6.

This
process will
repeat,
yielding
proportional
fairness.

2 2/3 1 1 A (2/3) C(1) B(1) A

3 1 1 1 C(1) B(1) A(1) C

4 1 1 2 B(1) A(1) C(2) B

5 1 3/2 2 A(1) B(3/2) C(2) A

6 4/3 3/2 2 A (4/3) B(3/2) C(2)

10CS 3204 Fall 2008

WFQ (cont’d)
• WFQ requires a sorted ready queue

– Linux now uses R/B tree
– Higher complexity than O(1) linked lists, but appears

manageable for real-world ready queue sizes
• Unblocked processes that reenter the ready queue are

assigned a virtual time reflecting the value that their virtual
ti t ld h if th ’d i d CPU titime counter would have if they’d received CPU time
proportionally

• Accommodating I/O bound processes still requires fudging
– In strict WFQ, only way to improve latency is to set number of

shares high – but this is disastrous if process is not truly I/O
bound

– Linux uses “sleeper fairness,” to identify when to boost virtual
time; similar to the sleep average in old scheduler

CS 3204 Fall 2008 11

Linux SMP Load Balancing
• Runqueue is per CPU
• Periodically, lengths of

runqueues on different
CPU is compared

static void double_rq_lock(
runqueue_t *rq1,
runqueue_t *rq2)

{
if (rq1 == rq2) {

spin_lock(&rq1->lock);
} else {

CS 3204 Fall 2008 12

CPU is compared
– Processes are migrated to

balance load
• Aside: Migrating requires

locks on both runqueues

if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);

} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);

}
}

}

3

Real-time Scheduling
• Real-time systems must observe not only

execution time, but a deadline as well
– Jobs must finish by deadline
– But turn-around time is usually less important

• Common scenario are recurring jobs

CS 3204 Fall 2008 13

g j
– E.g., need 3 ms every 10 ms (here, 10ms is the

recurrence period T, 3 ms is the cost C)
• Possible strategies

– RMA (Rate Monotonic)
• Map periods to priorities, fixed, static

– EDF (Earliest Deadline First)
• Always run what’s due next, dynamic

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

50 10 15 20 25

A

B

C

Hyper-period
CS 3204 Fall 2008 14

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

15

50 10 15 20 25

A

B

C

CS 3204 Fall 2008

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

50 10 15 20 25

A

B

C

CS 3204 Fall 2008 16

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).
Lexical order tie breaker (C > B > A)

50 10 15 20 25

A

B

C

Lexical order tie breaker (C > B > A)

CS 3204 Fall 2008 17

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

50 10 15 20 25

A

B

C

CS 3204 Fall 2008 18

4

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

50 10 15 20 25

A

B

C

CS 3204 Fall 2008 19

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

50 10 15 20 25

A

B

C

CS 3204 Fall 2008 20

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

50 10 15 20 25

A

B

C

CS 3204 Fall 2008 21

EDF – Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

50 10 15 20 25

A

B

C

Pattern repeats

CS 3204 Fall 2008 22

EDF Properties

• Feasibility test:

• U = 100% in example
• Bound theoretical
• Sufficient and necessary
• Optimal

CS 3204 Fall 2008 23

Scheduling Summary

• OS must schedule all resources in a system
– CPU, Disk, Network, etc.

• CPU Scheduling affects indirectly scheduling of
other devices

CS 3204 Fall 2008 24

• Goals for general purpose schedulers:
– Minimizing latency (avg. completion or waiting time)
– Maximing throughput
– Provide fairness

• In Practice: some theory, lots of tweaking

