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Case Study: 2.6 Linux Scheduler
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Linux Scheduler (2)

« Instead of recomputation loop, recompute
priority at end of each timeslice
—dyn_prio = nice + interactivity bonus (-5...5)

« Interactivity bonus depends on sleep_avg
— measures time a process was blocked

« 2 priority arrays (“active” & “expired”) in
each runqueue (Linux calls ready queues
“runqueue”)

——irginia

m'l'edl

CS 3204 Fall 2008

Linux Scheduler (3)

struct prio_array {
unsigned int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIOJ;

/* Per CPU runqueue */
struct runqueue {
prio_array_t *active;
prio_array_t *expired;
prio_array_t arrays[2];

=

typedef struct prio_array prio_array_t;

[*find the highest-priority ready thread */

idx = sched_find_first_bit(array->bitmap);
queue = array->queue + idx;

next = list_entry(queue->next, task_t, run_list);

« Finds highest-priority ready thread quickly
« Switching active & expired arrays at end of epoch is
simple pointer swap (“O(1)” claim)
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Linux Timeslice Computation

* Linux scales static priority to timeslice
—Nice[-20 ... O ... 19 ] maps to
[800ms ... 100 ms ... 5ms]

* Various tweaks:
— “interactive processes” are reinserted into
active array even after timeslice expires
« Unless processes in expired array are starving

— processes with long timeslices are round-
robin’d with other of equal priority at sub-
timeslice granularity
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Proportional Share Scheduling

« Aka “Fair-Share” Scheduling
« None of algorithms discussed so far provide a
direct way of assigning CPU shares
— E.g., give 30% of CPU to process A, 70% to process
B

« Proportional Share algorithms do by assigning
“tickets” or “shares” to processes

— Process get to use resource in proportion of their
shares to total number of shares

¢ Lottery Scheduling, Weighted Fair
Queuing/Stride Scheduling [Waldspurger 1995]
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Lottery Scheduling

 ldea: number tickets between 1...N
— every process gets p; tickets according to importance
— process 1 gets tickets [1... p;-1]
— process 2 gets tickets [p,... p1.p,-1] and so on.

» Scheduling decision:

— Hold a lottery and draw ticket, holder gets to run for
next time slice

* Nondeterministic algorithm
¢ Q.: how to implement priority donation?
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Weighted Fair Queuing

« Uses ‘per process’ virtual time

+ Increments process’s virtual time by a “stride”
after each quantum, which is defined as
(process_share)!

* Choose process with lowest virtual finishing
time
— ‘virtual finishing time’ is virtual time + stride

« Also known as stride scheduling

* Linux now implements a variant of
WFQ/Stride Scheduling as its “CFS”
completely fair scheduler
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WFQ Example (A=3, B=2, C=1)

Ready Queue is sorted by Virtual Finish Time
(Virtual Time at end of quantum if a process were scheduled)

Who
Time Task A | Task B | Task C | Ready Queue Runs
One
0 13 172 1 AR B (1/2) C (1) A | scheduling
epoch.
1 213 12 1 B (1/2)A(2/3) C (1) B Aran 3 out
of 6 quanta,
2 23 1 1 A(2/3) C(1) B(1) A |B2outof6,
C1loutof6.
3 1 1 1 C(1) B(1) A(1) [
This
4 1 1 2 B(1) A1) C(2) B process will
repeat,
5 1 312 2 A(1) B(3/2) C(2) A | yielding
proportional
6 4/3 3/2 2 A(4/3) B(3/2) C(2) fairness.
jr—— I]g'nia
v CS 3204 Fall 2008 10

m'l'edl

WFQ (cont'd)

* WEFQ requires a sorted ready queue
— Linux now uses R/B tree
— Higher complexity than O(1) linked lists, but appears
manageable for real-world ready queue sizes
+ Unblocked processes that reenter the ready queue are
assigned a virtual time reflecting the value that their virtual
time counter would have if they'd received CPU time
proportionally
« Accommodating I/O bound processes still requires fudging
— In strict WFQ, only way to improve latency is to set number of
shares high — but this is disastrous if process is not truly 1/0
bound
— Linux uses “sleeper fairness,” to identify when to boost virtual
time; similar to the sleep average in old scheduler
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Linux SMP Load Balancing

. static void double_rg_lock
¢ Runqueue is per CPU runqueue_mqi,q‘ (

. . runqueue_t *rq2)
* Periodically, lengths of

. if (rql ==rg2,
rungqueues on different R

spin_lock(&rq1->lock);

H }else {
CPU is compared o
_ H spin_lock(&rq1->lock);
Processes are migrated to opin_ock(212.o1ock)
balance load }else {

. . B . spin_lock(&rg2->lock);
* Aside: Migrating requires )snin,lock(&rql»lock):

locks on both runqueues |
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Real-time Scheduling

* Real-time systems must observe not only
execution time, but a deadline as well
— Jobs must finish by deadline
— But turn-around time is usually less important
« Common scenario are recurring jobs

— E.g., need 3 ms every 10 ms (here, 10ms is the
recurrence period T, 3 ms is the cost C)

* Possible strategies
— RMA (Rate Monotonic)
« Map periods to priorities, fixed, static
— EDF (Earliest Deadline First)
« Always run what's due next, dynamic
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EDF — Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).

t
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C
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Task | T [
A 4 1
B 8 4
C 12 3
Lexical order tie breaker (C> B >A) Assume deadline equals period (T).
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EDF — Example

Task T C
A 4 1
B 8 4
[ 12 3
Assume deadline equals period (T).
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Task T C
A 4 1
B 8 4
c 12 3
Assume deadline equals period (T).
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Task T C
A 4 1
B 8 4
c 12 3
Assume deadline equals period (T).
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EDF — Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).
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EDF — Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).
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EDF Properties

H HH . n -
Feasibility test: 3 Ci <1

i

i=

« U=100% in example
Bound theoretical
Sufficient and necessary
Optimal
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EDF — Example

Task T C
A 4 1
B 8 4
C 12 3

Assume deadline equals period (T).
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EDF — Example

Task T C
A 4 1
B 8 4
[} 12 3

Assume deadline equals period (T).
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Scheduling Summary

¢ OS must schedule all resources in a system
— CPU, Disk, Network, etc.

CPU Scheduling affects indirectly scheduling of
other devices

Goals for general purpose schedulers:

— Minimizing latency (avg. completion or waiting time)
— Maximing throughput

— Provide fairness

« In Practice: some theory, lots of tweaking
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