
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 13

Announcements

• Project 2 due Oct 20, 11:59pm
– Should have reached “Hello World” aka args-

none point by now
• No office hours today

CS 3204 Fall 2008 2

• No office hours today

Resource Allocation and 
Schedulingg

Resource Allocation & Scheduling

• Resource management is primary OS function
• Involves resource allocation & scheduling

– Who gets to use what resource and for how long
• Example resources:

– CPU time

CS 3204 Fall 2008 4

– CPU time
– Disk bandwidth
– Network bandwidth
– RAM
– Disk space

• Processes are the principals that use resources
– often on behalf of users

Preemptible vs Nonpreemptible 
Resources

• Nonpreemptible resources:
– Once allocated, can’t easily ask for them back 

– must wait until process returns them (or 
exits)

CS 3204 Fall 2008 5

)
• Examples: Locks, Disk Space, Control of terminal

• Preemptible resources:
– Can be taken away (“preempted”) and 

returned without the process noticing it
• Examples: CPU, Memory

Physical vs Virtual Memory
• Classification of a resource as preemptible 

depends on price one is willing to pay to 
preempt it
– Can theoretically preempt most resources via copying 

& indirection
Vi t l M h i t k h i l

CS 3204 Fall 2008 6

• Virtual Memory: mechanism to make physical 
memory preemptible
– Take away by swapping to disk, return by reading 

from disk (possibly swapping out others)
• Not always tolerable

– resident portions of kernel
– Pintos kernel stack pages



2

Space Sharing vs Time Sharing

• Space Sharing: Allocation (“how much?”)
– Use if resource can be split (multiple CPUs, 

memory, etc.)
– Use if resource is non-preemptible

CS 3204 Fall 2008 7

Use if resource is non-preemptible
• Time Sharing: Scheduling (“how long?”)

– Use if resource can’t be split
– Use if resource is easily preemptible

CPU vs. Other Resources

• CPU is not the only resource that needs to be 
scheduled

• Overall system performance depends on 
efficient use of all resources

CS 3204 Fall 2008 8

– Resource can be in use (busy) or be unused (idle)
• Duty cycle: portion of time busy

– Consider I/O device: busy after receiving I/O request 
– if CPU scheduler delays process that will issue I/O 
request, I/O device is underutilized

• Ideal: want to keep all devices busy

Per-process perspective

• Process alternates between CPU bursts & 
I/O bursts

CS 3204 Fall 2008 9

I/OCPU

I/O Bound Process

CPU Bound Process

Global perspective

• If these were executed on the same CPU: 

CS 3204 Fall 2008 10

I/OCPU

I/O Bound Process

CPU Bound Process
Waiting

CPU Scheduling

Part I

CPU Scheduling Terminology
• A job (sometimes called a task, or a job instance)

– Activity that’s scheduled: process or part of a process
• Arrival time: time when job arrives
• Start time: time when job actually starts
• Finish time: time when job is done
• Completion time (aka Turn-around time) 

– Finish time – Arrival time

CS 3204 Fall 2008 12

• Response time
– Time when user sees response – Arrival time

• Execution time (aka cost): time a job needs to execute

CPUI/OCPU burstwaiting waiting

Arrival Time Start Time Finish Time

Completion TimeResponse Time



3

CPU Scheduling Terminology (2)

• Waiting time = time when job was ready-
to-run
– didn’t run because CPU scheduler picked 

another job

CS 3204 Fall 2008 13

another job
• Blocked time = time when job was blocked

– while I/O device is in use
• Completion time 

– Execution time + Waiting time + Blocked time

Static vs Dynamic Scheduling

• Static
– All jobs, their arrival & execution times are known in 

advance, create a schedule, execute it
• Used in statically configured systems, such as embedded 

real-time systems

CS 3204 Fall 2008 14

real-time systems

• Dynamic or Online Scheduling
– Jobs are not known in advance, scheduler must make 

online decision whenever jobs arrives or leaves
• Execution time may or may not be known
• Behavior can be modeled by making assumptions about 

nature of arrival process

Scheduling Algorithms vs 
Scheduler Implementations

• Scheduling algorithms’ properties are (usually) 
analyzed under static assumptions first; then 
adapted for dynamic scenarios

• Algorithms often consider only an abstract notion 
of (CPU) “jobs” but a dynamic scheduler must

CS 3204 Fall 2008 15

of (CPU) jobs , but a dynamic scheduler must 
map that to processes with alternating - and 
repeating - CPU and IO bursts
– Often applies static algorithm to current ready queue

• Algorithms often assume length of job/CPU burst 
is known, but real scheduler must estimate 
expected execution cost (or make assumptions)

Preemptive vs Nonpreemptive 
Scheduling

• Q.: when is scheduler 
asked to pick a thread from 
ready queue?

• Nonpreemptive:
– Only when RUNNING→

BLOCKED t iti

RUNNING
Process
must wait
for event

Scheduler
picks 
process

Process

CS 3204 Fall 2008 16

BLOCKED transition
– Or RUNNING → EXIT
– Or voluntary yield: RUNNING 

→ READY
• Preemptive

– Also when BLOCKED→
READY transition

– Also on timer 

READYBLOCKED

for event

Event 
arrived

Process
preempted

CPU Scheduling Goals
• Minimize latency

– Can mean (avg) completion time
– Can mean (avg) response time

• Maximize throughput
Th h t b f fi i h d j b ti it

CS 3204 Fall 2008 17

– Throughput: number of finished jobs per time-unit
– Implies minimizing overhead (for context-switching, 

for scheduling algorithm itself)
– Requires efficient use of non-CPU resources

• Fairness
– Minimize variance in waiting time/completion time

Scheduling Constraints

• Reaching those goals is difficult, because
– Goals are conflicting:

• Latency vs. throughput
• Fairness vs. low overhead

CS 3204 Fall 2008 18

– Scheduler must operate with incomplete 
knowledge

• Execution time may not be known
• I/O device use may not be known

– Scheduler must make decision fast
• Approximate best solution from huge solution space



4

First Come First Serve

• Schedule processes in the order in which 
they arrive
– Run until completion (or until they block)

Simple!

CS 3204 Fall 2008 19

• Simple!
• Example:

0 20 22 27Q.: what is the average
completion time?

2 7

FCFS (cont’d)
• Disadvantage: completion time depends on arrival order

– Unfair to short jobs
• Possible Convoy Effect:

– 1 CPU bound (long CPU bursts, infrequent I/O bursts), multiple 
I/O bound jobs (frequent I/O bursts, short CPU bursts).
CPU b d li CPU I/O d i idl

CS 3204 Fall 2008 20

– CPU bound process monopolizes CPU: I/O devices are idle
– New I/O requests by I/O bound jobs are only issued when CPU 

bound job blocks – CPU bound job “leads” convoy of I/O bound 
processes

• FCFS not usually used for CPU scheduling, but often 
used for other resources (network device)

Round-Robin

• Run process for a timeslice (quantum), 
then move on to next process, repeat

• Decreases avg completion if jobs are of 
different lengths

CS 3204 Fall 2008 21

different lengths
• No more unfairness to short jobs!

0 27

Q.: what is the average
completion time?

5 8

Round Robin (2)

• What if there are no “short” jobs?

0 217 14

CS 3204 Fall 2008 22

Q.: what is the average completion time?

What would it be under FCFS?

Round Robin – Cost of Time Slicing

• Context switching incurs a cost
– Direct cost (execute scheduler & context switch) + indirect cost 

(cache & TLB misses)
• Long time slices → lower overhead, but approaches 

FCFS if processes finish before timeslice expires

CS 3204 Fall 2008 23

• Short time slices → lots of context switches, high 
overhead

• Typical cost: context switch < 10µs
• Time slice typically around 100ms 
• Note: time slice length != interval between timer 

interrupts (as you know from Pintos…)
– Timer frequency usually 1000Hz

Shortest Process Next (SPN)

• Idea: remove unfairness towards short 
processes by always picking the shortest 
job

• If done nonpreemptively also known as: 

CS 3204 Fall 2008 24

p p y
– Shortest Job First (SJF), Shortest Time to 

Completion First (STCF)
• If done preemptively known as: 

– Shortest Remaining Time (SRT), Shortest 
Remaining Time to Completion First (SRTCF)



5

SPN (cont’d)

• Provably
optimal
with respect
to avg waiting time:

0 272 7

CS 3204 Fall 2008 25

– Moving shorter job up reduces its waiting time more 
than it delays waiting time of longer job that follows

• Advantage: Good I/O utilization
• Disadvantage:

– Can starve long jobs Big Q: How do we know the 
length of a job?

Practical SPN
• Usually don’t know (remaining) execution time

– Exception: profiled code in real-time system; or worst-
case execution time analysis (WCET)

• Idea: determine future from past:
– Assume next CPU burst will be as long as previous 

CS 3204 Fall 2008 26

g p
CPU burst

– Or: weigh history using (potentially exponential) 
average: more recent burst lengths more predictive 
than past CPU bursts

• Note: for some resources, we know or can 
compute length of next “job”:
– Example: disk scheduling (shortest-seek time first)

Multi-Level Feedback Queue 
Scheduling

• Kleinrock 1969
• Want: 

– preference for short jobs (tends to lead to good I/O utilization)
– longer timeslices for CPU bound jobs (reduces context-switching 

overhead)

CS 3204 Fall 2008 27

• Problem:
– Don’t know type of each process – algorithm needs to figure out

• Use multiple queues
– queue determines priority
– usually combined with static priorities (nice values)
– many variations of this idea exist

MLFQS
MAX

gh
er

 P
rio

rit
y

2

4

3

er
 T

im
es

lic
es

Process that
use up their
time slice move
down

Processes start 
in highest queue

CS 3204 Fall 2008 28

MIN

H
ig

1

2

Lo
ng

Higher priority queues are served before lower-priority 
ones - within highest-priority queue, round-robin

Processes 
that starve 

move up

Only ready processes are in this queue - blocked processes 
leave queue and reenter same queue on unblock

Basic Scheduling: Summary
• FCFS: simple

– unfair to short jobs & poor I/O performance (convoy effect) 
• RR: helps short jobs

– loses when jobs are equal length
• SPN: optimal average waiting time

CS 3204 Fall 2008 29

p g g
– which, if ignoring blocking time, leads to optimal average 

completion time
– unfair to long jobs
– requires knowing (or guessing) the future

• MLFQS: approximates SPN without knowing execution 
time
– Can still be unfair to long jobs


