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CS 3204
Operating Systemsp g y

Godmar Back

Lecture 10

Announcements

• Project 1 due on Sep 29, 11:59pm
– Additional GTA office hours

• Peter: Fri 9-11am

• Midterm Oct 2
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– Will cover content up until including Tuesday’s 
lecture

• Project 2 Help Session TBA
• Reading: 

– Read carefully 1.5, 3.1-3.3, 6.1-6.4

Project 1 Suggested Timeline
• By now, you have:

– Have read relevant project documentation, set up CVS, built and 
run your first kernel, designed your data structures for alarm 
clock

• And should be finishing:
Alarm clock by Sep 16
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– Alarm clock by Sep 16
• Pass all basic priority tests by Sep 18
• Priority Inheritance & Advanced Scheduler will take the 

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Sep 23
– Develop & test fixed-point layer independently by Sep 23

• Due date Sep 29

Concurrency & Synchronization

Monitors

Monitors
• A monitor combines a set of shared variables & 

operations to access them
– Think of an enhanced C++ class with no public fields

• A monitor provides implicit synchronization (only 
one thread can access private variables 
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p
simultaneously)
– Single lock is used to ensure all code associated with 

monitor is within critical section
• A monitor provides a general signaling facility

– Wait/Signal pattern (similar to, but different from 
semaphores)

– May declare & maintain multiple signaling queues

Monitors (cont’d)
• Classic monitors are embedded in programming 

languages
– Invented by Hoare & Brinch-Hansen 1972/73
– First used in Mesa/Cedar System @ Xerox PARC 

1978
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– Adapted version available in Java/C#
• (Classic) Monitors are safer than semaphores

– can’t forget to lock data – compiler checks this
• In contemporary C, monitors are a 

synchronization pattern that is achieved using 
locks & condition variables
– Must understand monitor abstraction to use it
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Infinite Buffer w/ Monitor
monitor buffer {

/* implied: struct lock mlock;*/
private:

char buffer[];
int head, tail;

public:
produce(item);

buffer::produce(item i)
{  /* try { lock_acquire(&mlock); */

buffer[head++] = i;
/* } finally {lock_release(&mlock);} */

}

buffer::consume()
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produce(item);
item consume();

}

buffer::consume()
{  /* try { lock_acquire(&mlock); */

return buffer[tail++];
/* } finally {lock_release(&mlock);} */

}

• Monitors provide implicit protection for their internal 
variables
– Still need to add the signaling part

Condition Variables
• Variables used by a monitor for signaling a condition

– a general (programmer-defined) condition, not just integer 
increment as with semaphores

– The actual condition is typically some boolean predicate of 
monitor variables, e.g. “buffer.size > 0”

• Monitor can have more than one condition variable
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• Monitor can have more than one condition variable
• Three operations:

– Wait(): leave monitor, wait for condition to be signaled, reenter 
monitor

– Signal(): signal one thread waiting on condition
– Broadcast(): signal all threads waiting on condition 

Bounded Buffer w/ Monitor
monitor buffer {

condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
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public:
produce(item);
item consume();

}

}
buffer::consume()
{  

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

Bounded Buffer w/ Monitor
monitor buffer {

condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
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public:
produce(item);
item consume();

}

}
buffer::consume()
{  

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

Q1.: How is lost update problem 
avoided?

Q2.: Why while() and not if()?
lock_release(&mlock); 
block_on(items_avail);
lock_acquire(&mlock);

Recall:
Infinite Buffer Problem, Take 5

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)
thread_unblock(

consumers pop()

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
disable_preemption();
lock release(buffer);

9/29/2008CS 3204 Fall 2008 11

consumers.pop()
);

lock_release(buffer);
}

• Aside: this solution to the infinite 
buffer problem essentially 
reinvented monitors!

lock_release(buffer);
thread_block(current);
enable_preemption();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

Implementing Condition Variables

• A condition variable’s 
state is just a queue of 
waiters:
– Wait(): adds current 

R
egion of m

Enter

Wait

Signal
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()
thread to (end of queue) 
& block 

– Signal(): pick one thread 
from queue & unblock it

– Broadcast(): unblock all 
threads

m
utual exclusion

Exit

Wait

Signal
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Mesa vs Hoare Style
• Mesa-style monitors signaler keeps lock

– cond_signal keeps lock, so it leaves signaling thread in monitor
– waiter is made READY, but can’t enter until signaler gives up 

lock
– There is no guarantee whether signaled thread will enter monitor 

next (or some other thread) - so must always use “while()” when

9/29/2008CS 3204 Fall 2008 13

next (or some other thread) so must always use while()  when 
checking condition – cannot assume that condition set by 
signaling thread will still hold when monitor is reentered

– POSIX Threads & Pintos are Mesa-style (and so are C# & Java)
• Alternative is Hoare-style (after C.A.R. Hoare)

– cond_signal leads to signaling thread’s exit from monitor and 
immediate reentry of waiter (e.g., monitor lock is passed from 
signaler to signalee)

– not commonly used

Condition Variables vs. Semaphores

• Condition Variables
– Signals are lost if 

nobody’s on the queue 
(e.g., nothing 
happens)

• Semaphores
– Signals (calls to V() or 

sema_up()) are 
remembered even if 
nobody’s current
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happens) 

– Wait() always blocks

nobody s current 
waiting

– Wait (e.g., P() or 
sema_down()) may or 
may not block

Monitors in C
• POSIX Threads & Pintos
• No compiler support, must do it manually

– must declare locks & condition vars
– must call lock_acquire/lock_release when entering&leaving the 

monitor
– must use cond wait/cond signal to wait for/signal condition
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_ _ g g
• Note: cond_wait(&c, &m) takes monitor lock as 

parameter
– necessary so monitor can be left & reentered without losing 

signals
• Pintos cond_signal() takes lock as well

– only as debugging help/assertion to check lock is held when 
signaling

– pthread_cond_signal() does not

Locks in Java/C#
synchronized void method() {

code;

synchronized (obj) {

more code;

}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
d

is
transformed
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• Every object can function as lock – no need to declare & 
initialize them!

• synchronized (locked in C#) brackets code in 
lock/unlock pairs – either entire method or block {}

• finally clause ensures unlock() is always called

even more code;

}

even more code;
} finally { unlock(this); }

}

to 

Monitors in Java
• synchronized block 

means 
– enter monitor
– execute block
– leave monitor

• wait()/notify() use 

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
thi tif ()
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() y()
condition variable 
associated with receiver
– Every object in Java can 

function as a condition var

this.notify();
}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

Per Brinch Hansen’s Criticism

• See Java’s Insecure Parallelism [Brinch Hansen 
1999]

• Says Java abused concept of monitors because 
Java does not require all accesses to shared 
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q
variables to be within monitors

• Why did designers of Java not follow his lead?
– Performance: compiler can’t easily decide if object is 

local or not - conservatively, would have to make all 
public methods synchronized – pay at least cost of 
atomic instruction on entering every time
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Readers/Writer w/ Monitor
struct lock mlock; // protects rdrs & wrtrs
int readers = 0, writers = 0;
struct condvar canread, canwrite;
void read_lock_acquire() {

lock_acquire(&mlock);
while (writers > 0)

cond_wait(&canread, &mlock);
readers++;

void write_lock_acquire() {
lock_acquire(&mlock);
while (readers > 0 || writers > 0)

cond_wait(&canwrite, &mlock);
writers++;
lock_release(&mlock);

}
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readers++;
lock_release(&mlock);

}
void read_lock_release() {

lock_acquire(&mlock);
if (--readers == 0)

cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

void write_lock_release() {
lock_acquire(&mlock);
writers--;
ASSERT(writers == 0);
cond_broadcast(&canread, &mlock);
cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}
Q.: does this implementation prevent starvation?

Summary

• Semaphores & Monitors are both higher-
level constructs

• Monitors can be included in a language 
(Mesa Java)
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(Mesa, Java)
– in C, however, they are just a programming 

pattern that involves a structured way of using 
mutex+condition variables

• When should you use which?

Semaphores vs. Monitors

• Semaphores & Monitors are both higher-
level constructs

• Use semaphores where updates must be 
remembered where # of signals must

9/29/2008CS 3204 Fall 2007 21

remembered – where # of signals must 
match # of waits

• Otherwise, use monitors.
• Prefer semaphore if they are applicable

High vs Low Level Synchronization
• The bounded buffer problem (and many others) can be 

solved with higher-level synchronization primitives
– semaphores and monitors

• In Pintos kernel, one could also use 
thread_block/unblock directly
– this is not always efficiently possible in other concurrent
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this is not always efficiently possible in other concurrent 
environments

• Q.: when should you use low-level synchronization (a la 
thread_block/thread_unblock) and when should you 
prefer higher-level synchronization?

• A.: Except for the simplest scenarios, higher-level 
synchronization abstractions are always preferable
– They’re well understood; make it possible to reason about code.
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Nonblocking Synchronization
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Nonblocking Synchronization
• Alternative to locks: instead of serializing 

access, detect when bad interleaving occurred, 
retry if so
void increment_counter(int *counter) {

do {
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int oldvalue = *counter;
int newvalue = oldvalue + 1;
[ BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION ]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[ END CAS ]

} while (!success);
}

Nonblocking Synchronization (2)
• Also referred to a “optimistic concurrency control”
• x86 supports this model via cmpxchg instruction
• Advantages:

– Less overhead for uncontended locks (can be faster, and need 
no storage for lock queue)

– Synchronizes with IRQ handler automatically
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Synchronizes with IRQ handler automatically
– Can be easier to clean up when killing a thread
– No priority inversion or deadlock

• Disadvantages
– Can require lots of retries, leading to wasted CPU cycles
– Requires careful memory/ownership management – must ensure 

that memory is not reclaimed while a thread may hold reference 
to it (this can lead to blocking, indirectly, when exhausting 
memory – real implementations need to worry about this!)

Aside: Nonblocking Properties

• Different NBS algorithms can be analyzed 
with respect to their progress guarantees

• Lock-freedom:
O th d ill t ll k
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– One thread will eventually make progress
• Wait-freedom guarantee: (strongest)

– All threads will eventually make progress
• Obstruction-freedom: (weakest)

– Thread will make progress if it is unobstructed

Recent Developments (1)
• As multi- and manycore architectures become 

abundant, need for better programming models 
becomes stronger
– See “The Landscape of Parallel Computing 

Research: A View From Berkeley”
Di ti i h i d l l 5• Distinguish programming models along 5 
categories (each explicit or implicit):
– Task identification
– Task mapping
– Data distribution
– Communication Mapping
– Synchronization
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Transactional Memory
• Software (STM) or hardware-based
• Idea:

– Break computations into pieces called transactions
• Transaction must have the same “atomicity” semantics as locks
• NB: not as in a database transaction (no persistence on stable storage!)

– Don’t use locks to prevent bad interleavings, and occur cost of 
serialization, rather: focus on the results of the computation: “Could they 
h b b i d i i l d (i if l k h d b d?)”have been obtained in some serial order (i.e., if locks had been used?)” 
– if so, allow them. Otherwise, undo computations

• Many approaches possible – goal is to relieve the programmer from 
having to use locks explicitly (and avoid their pitfalls such as 
forgetting them, potential for deadlock, and potential for low CPU 
utilization)
– Challenge is to implement this efficiently and in a manner that integrates 

with existing languages
– See [Larus 2007] for a survey of approaches
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Closing Thoughts on Concurrency 
and Synchronization

• Have covered most frequently used concepts and 
models today:
– Locks, semaphores, monitors/condition variables

• Have looked at them from both users’ and 
implementers’ perspective
– And considered both correctness and performance 

perspective
• Will use these concepts in projects 2, 3, and 4 

(Pintos is a fully preemptive kernel!)
• Yet overall, have barely scratched the surface

– Many exciting developments may lie ahead in coming 
years
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