
1

CS 3204
Operating Systemsp g y

Godmar Back

Lecture 10

Announcements

• Project 1 due on Sep 29, 11:59pm
– Additional GTA office hours

• Peter: Fri 9-11am

• Midterm Oct 2

9/29/2008CS 3204 Fall 2008 2

– Will cover content up until including Tuesday’s
lecture

• Project 2 Help Session TBA
• Reading:

– Read carefully 1.5, 3.1-3.3, 6.1-6.4

Project 1 Suggested Timeline
• By now, you have:

– Have read relevant project documentation, set up CVS, built and
run your first kernel, designed your data structures for alarm
clock

• And should be finishing:
Alarm clock by Sep 16

9/29/2008CS 3204 Fall 2008 3

– Alarm clock by Sep 16
• Pass all basic priority tests by Sep 18
• Priority Inheritance & Advanced Scheduler will take the

most time to implement & debug, start them in parallel
– Should have design for priority inheritance figured out by Sep 23
– Develop & test fixed-point layer independently by Sep 23

• Due date Sep 29

Concurrency & Synchronization

Monitors

Monitors
• A monitor combines a set of shared variables &

operations to access them
– Think of an enhanced C++ class with no public fields

• A monitor provides implicit synchronization (only
one thread can access private variables

9/29/2008CS 3204 Fall 2008 5

p
simultaneously)
– Single lock is used to ensure all code associated with

monitor is within critical section
• A monitor provides a general signaling facility

– Wait/Signal pattern (similar to, but different from
semaphores)

– May declare & maintain multiple signaling queues

Monitors (cont’d)
• Classic monitors are embedded in programming

languages
– Invented by Hoare & Brinch-Hansen 1972/73
– First used in Mesa/Cedar System @ Xerox PARC

1978

9/29/2008CS 3204 Fall 2008 6

– Adapted version available in Java/C#
• (Classic) Monitors are safer than semaphores

– can’t forget to lock data – compiler checks this
• In contemporary C, monitors are a

synchronization pattern that is achieved using
locks & condition variables
– Must understand monitor abstraction to use it

2

Infinite Buffer w/ Monitor
monitor buffer {

/* implied: struct lock mlock;*/
private:

char buffer[];
int head, tail;

public:
produce(item);

buffer::produce(item i)
{ /* try { lock_acquire(&mlock); */

buffer[head++] = i;
/* } finally {lock_release(&mlock);} */

}

buffer::consume()

9/29/2008CS 3204 Fall 2008 7

produce(item);
item consume();

}

buffer::consume()
{ /* try { lock_acquire(&mlock); */

return buffer[tail++];
/* } finally {lock_release(&mlock);} */

}

• Monitors provide implicit protection for their internal
variables
– Still need to add the signaling part

Condition Variables
• Variables used by a monitor for signaling a condition

– a general (programmer-defined) condition, not just integer
increment as with semaphores

– The actual condition is typically some boolean predicate of
monitor variables, e.g. “buffer.size > 0”

• Monitor can have more than one condition variable

9/29/2008CS 3204 Fall 2008 8

• Monitor can have more than one condition variable
• Three operations:

– Wait(): leave monitor, wait for condition to be signaled, reenter
monitor

– Signal(): signal one thread waiting on condition
– Broadcast(): signal all threads waiting on condition

Bounded Buffer w/ Monitor
monitor buffer {

condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}

9/29/2008CS 3204 Fall 2008 9

public:
produce(item);
item consume();

}

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

Bounded Buffer w/ Monitor
monitor buffer {

condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}

9/29/2008CS 3204 Fall 2008 10

public:
produce(item);
item consume();

}

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

Q1.: How is lost update problem
avoided?

Q2.: Why while() and not if()?
lock_release(&mlock);
block_on(items_avail);
lock_acquire(&mlock);

Recall:
Infinite Buffer Problem, Take 5

producer(item)
{
lock_acquire(buffer);
buffer[head++] = item;
if (#consumers > 0)
thread_unblock(

consumers pop()

consumer()
{

lock_acquire(buffer);
while (buffer is empty) {

consumers.add(current);
disable_preemption();
lock release(buffer);

9/29/2008CS 3204 Fall 2008 11

consumers.pop()
);

lock_release(buffer);
}

• Aside: this solution to the infinite
buffer problem essentially
reinvented monitors!

lock_release(buffer);
thread_block(current);
enable_preemption();
lock_acquire(buffer);

}
item = buffer[tail++];
lock_release(buffer);
return item

}

Implementing Condition Variables

• A condition variable’s
state is just a queue of
waiters:
– Wait(): adds current

R
egion of m

Enter

Wait

Signal

9/29/2008CS 3204 Fall 2008 12

()
thread to (end of queue)
& block

– Signal(): pick one thread
from queue & unblock it

– Broadcast(): unblock all
threads

m
utual exclusion

Exit

Wait

Signal

3

Mesa vs Hoare Style
• Mesa-style monitors signaler keeps lock

– cond_signal keeps lock, so it leaves signaling thread in monitor
– waiter is made READY, but can’t enter until signaler gives up

lock
– There is no guarantee whether signaled thread will enter monitor

next (or some other thread) - so must always use “while()” when

9/29/2008CS 3204 Fall 2008 13

next (or some other thread) so must always use while() when
checking condition – cannot assume that condition set by
signaling thread will still hold when monitor is reentered

– POSIX Threads & Pintos are Mesa-style (and so are C# & Java)
• Alternative is Hoare-style (after C.A.R. Hoare)

– cond_signal leads to signaling thread’s exit from monitor and
immediate reentry of waiter (e.g., monitor lock is passed from
signaler to signalee)

– not commonly used

Condition Variables vs. Semaphores

• Condition Variables
– Signals are lost if

nobody’s on the queue
(e.g., nothing
happens)

• Semaphores
– Signals (calls to V() or

sema_up()) are
remembered even if
nobody’s current

9/29/2008CS 3204 Fall 2008 14

happens)

– Wait() always blocks

nobody s current
waiting

– Wait (e.g., P() or
sema_down()) may or
may not block

Monitors in C
• POSIX Threads & Pintos
• No compiler support, must do it manually

– must declare locks & condition vars
– must call lock_acquire/lock_release when entering&leaving the

monitor
– must use cond wait/cond signal to wait for/signal condition

9/29/2008CS 3204 Fall 2008 15

_ _ g g
• Note: cond_wait(&c, &m) takes monitor lock as

parameter
– necessary so monitor can be left & reentered without losing

signals
• Pintos cond_signal() takes lock as well

– only as debugging help/assertion to check lock is held when
signaling

– pthread_cond_signal() does not

Locks in Java/C#
synchronized void method() {

code;

synchronized (obj) {

more code;

}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
d

is
transformed

9/29/2008CS 3204 Fall 2007 16

• Every object can function as lock – no need to declare &
initialize them!

• synchronized (locked in C#) brackets code in
lock/unlock pairs – either entire method or block {}

• finally clause ensures unlock() is always called

even more code;

}

even more code;
} finally { unlock(this); }

}

to

Monitors in Java
• synchronized block

means
– enter monitor
– execute block
– leave monitor

• wait()/notify() use

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
thi tif ()

9/29/2008CS 3204 Fall 2008 17

() y()
condition variable
associated with receiver
– Every object in Java can

function as a condition var

this.notify();
}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

Per Brinch Hansen’s Criticism

• See Java’s Insecure Parallelism [Brinch Hansen
1999]

• Says Java abused concept of monitors because
Java does not require all accesses to shared

9/29/2008CS 3204 Fall 2008 18

q
variables to be within monitors

• Why did designers of Java not follow his lead?
– Performance: compiler can’t easily decide if object is

local or not - conservatively, would have to make all
public methods synchronized – pay at least cost of
atomic instruction on entering every time

4

Readers/Writer w/ Monitor
struct lock mlock; // protects rdrs & wrtrs
int readers = 0, writers = 0;
struct condvar canread, canwrite;
void read_lock_acquire() {

lock_acquire(&mlock);
while (writers > 0)

cond_wait(&canread, &mlock);
readers++;

void write_lock_acquire() {
lock_acquire(&mlock);
while (readers > 0 || writers > 0)

cond_wait(&canwrite, &mlock);
writers++;
lock_release(&mlock);

}

9/29/2008CS 3204 Fall 2008 19

readers++;
lock_release(&mlock);

}
void read_lock_release() {

lock_acquire(&mlock);
if (--readers == 0)

cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

void write_lock_release() {
lock_acquire(&mlock);
writers--;
ASSERT(writers == 0);
cond_broadcast(&canread, &mlock);
cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}
Q.: does this implementation prevent starvation?

Summary

• Semaphores & Monitors are both higher-
level constructs

• Monitors can be included in a language
(Mesa Java)

9/29/2008CS 3204 Fall 2008 20

(Mesa, Java)
– in C, however, they are just a programming

pattern that involves a structured way of using
mutex+condition variables

• When should you use which?

Semaphores vs. Monitors

• Semaphores & Monitors are both higher-
level constructs

• Use semaphores where updates must be
remembered where # of signals must

9/29/2008CS 3204 Fall 2007 21

remembered – where # of signals must
match # of waits

• Otherwise, use monitors.
• Prefer semaphore if they are applicable

High vs Low Level Synchronization
• The bounded buffer problem (and many others) can be

solved with higher-level synchronization primitives
– semaphores and monitors

• In Pintos kernel, one could also use
thread_block/unblock directly
– this is not always efficiently possible in other concurrent

9/29/2008CS 3204 Fall 2008 22

this is not always efficiently possible in other concurrent
environments

• Q.: when should you use low-level synchronization (a la
thread_block/thread_unblock) and when should you
prefer higher-level synchronization?

• A.: Except for the simplest scenarios, higher-level
synchronization abstractions are always preferable
– They’re well understood; make it possible to reason about code.

9/29/2008CS 3204 Fall 2008 23

Nonblocking Synchronization

5

Nonblocking Synchronization
• Alternative to locks: instead of serializing

access, detect when bad interleaving occurred,
retry if so
void increment_counter(int *counter) {

do {

9/29/2008CS 3204 Fall 2007 25

int oldvalue = *counter;
int newvalue = oldvalue + 1;
[BEGIN ATOMIC COMPARE-AND-SWAP INSTRUCTION]
if (*counter == oldvalue) { *counter = newvalue; success = true; }
else { success = false; }
[END CAS]

} while (!success);
}

Nonblocking Synchronization (2)
• Also referred to a “optimistic concurrency control”
• x86 supports this model via cmpxchg instruction
• Advantages:

– Less overhead for uncontended locks (can be faster, and need
no storage for lock queue)

– Synchronizes with IRQ handler automatically

9/29/2008CS 3204 Fall 2007 26

Synchronizes with IRQ handler automatically
– Can be easier to clean up when killing a thread
– No priority inversion or deadlock

• Disadvantages
– Can require lots of retries, leading to wasted CPU cycles
– Requires careful memory/ownership management – must ensure

that memory is not reclaimed while a thread may hold reference
to it (this can lead to blocking, indirectly, when exhausting
memory – real implementations need to worry about this!)

Aside: Nonblocking Properties

• Different NBS algorithms can be analyzed
with respect to their progress guarantees

• Lock-freedom:
O th d ill t ll k

9/29/2008CS 3204 Fall 2007 27

– One thread will eventually make progress
• Wait-freedom guarantee: (strongest)

– All threads will eventually make progress
• Obstruction-freedom: (weakest)

– Thread will make progress if it is unobstructed

Recent Developments (1)
• As multi- and manycore architectures become

abundant, need for better programming models
becomes stronger
– See “The Landscape of Parallel Computing

Research: A View From Berkeley”
Di ti i h i d l l 5• Distinguish programming models along 5
categories (each explicit or implicit):
– Task identification
– Task mapping
– Data distribution
– Communication Mapping
– Synchronization

9/29/2008CS 3204 Fall 2008 28

Transactional Memory
• Software (STM) or hardware-based
• Idea:

– Break computations into pieces called transactions
• Transaction must have the same “atomicity” semantics as locks
• NB: not as in a database transaction (no persistence on stable storage!)

– Don’t use locks to prevent bad interleavings, and occur cost of
serialization, rather: focus on the results of the computation: “Could they
h b b i d i i l d (i if l k h d b d?)”have been obtained in some serial order (i.e., if locks had been used?)”
– if so, allow them. Otherwise, undo computations

• Many approaches possible – goal is to relieve the programmer from
having to use locks explicitly (and avoid their pitfalls such as
forgetting them, potential for deadlock, and potential for low CPU
utilization)
– Challenge is to implement this efficiently and in a manner that integrates

with existing languages
– See [Larus 2007] for a survey of approaches

9/29/2008CS 3204 Fall 2008 29

Closing Thoughts on Concurrency
and Synchronization

• Have covered most frequently used concepts and
models today:
– Locks, semaphores, monitors/condition variables

• Have looked at them from both users’ and
implementers’ perspective
– And considered both correctness and performance

perspective
• Will use these concepts in projects 2, 3, and 4

(Pintos is a fully preemptive kernel!)
• Yet overall, have barely scratched the surface

– Many exciting developments may lie ahead in coming
years

9/29/2008CS 3204 Fall 2008 30

