
CS 3204 Sample Final Exam (Spring & Fall 2007)

1/8

CS 3204 Sample Final Exam

This final exam was given in Spring and Fall 2007.

1 Failure-Oblivious Computing (10 pts)
If a program performs an illegal memory access, the operating system usually
terminates the program. Recently, some researchers have proposed the idea
of "failure-oblivious computing." A failure-oblivious system continues despite
faults such as illegal memory accesses. Instead, read accesses read
synthetic (made-up) values, whereas write accesses are ignored entirely.

a) (5 pts) Explain how you would implement this technique in the Pintos

kernel. Which function would you have to change and how? Be specific
about how you ensure that the faulting program can continue to make
progress after the fault. Address both the read and the write case.

The page fault handler (page_fault in exception.c in Pintos) needs to be changed
to examine the fault, manufacture a read value if needed, skip the instructions,
and resume execution at the next instruction. The following pseudocode
demonstrates this idea:

void page_fault(struct intr_frame *f) {
 instruction faulting_ins = ins_get_instruction_at_pc(f->eip);
 if (ins_is_read (ins))
 f->{ins_targetregister(ins)} = manufactured_value();
 f->eip += ins_length(ins);
 return;
}

In addition, all system calls that expect pointers to user-provided locations (read,
write, open, remove, etc.) would need to be changed to simply return (and not
terminate the process) if the pointer being passed is invalid.

b) (5 pts) Discuss the merits of this technique. Name, briefly, 1 argument in
favor of it and 1 argument against it.

As you can imagine, the idea is controversial. The main argument in favor of it is
that it can increase availability: instead of crashing, a program may provide
reduced service – in the case of a server program, maybe it cannot handle one
piece of malformed input, but will have recovered in time for the next.

The primary counterargument points out that hiding such failures could lead to
disastrous results if manufactured values are subsequently used in computations
with real side-effects, such as transferring money between accounts. It may also
lead to waste of resources by stretching out ultimately failing computations.

CS 3204 Sample Final Exam (Spring & Fall 2007)

2/8

2 Shared Memory (22 pts)
Most OS provide some form of shared memory capability to their user
processes. For instance, POSIX’s int shm_fd = shm_open(name,_) system
call can be used to obtain a file descriptor, based on a name, which can then
be mmap’ed into the processes’ address spaces. If two processes use
shm_open using the same name, they should see the same data.

Suppose you added an implementation of shared memory to the virtual
memory manager you implemented in project 3.

a) (10 pts) You would need to provide a system call

bool mmap_shared(int shm_fd, void *buf, size_t len);

to make a shared memory area visible in the user's address space.
shm_fd in this example is an open file descriptor pointing to the shared
memory object, whereas buf is the user virtual address at which the user
process wishes to access the shared area. Describe how you would
implement this system call. You may refer to your specific design in
project 3, or describe the solution in general terms. You may assume that
shm_open has already been implemented. Describe which data structures
you would have to update, and what checks you needed to perform.

mmap_shared needs to:

o Check that shm_fd is valid and came indeed from shm_open.
o Check that the virtual address range from buf to buf+len isn’t already

used, e.g., that there are no entries in the page table for that range.
o Add entries to the page table that refer to the shared object such that

subsequent accesses will create mappings to the frames in which the
shared object is located.

For the remainder of this question, suppose the physical frames holding
shared memory are subject to page frame reclamation. Below, describe what
actions would be necessary to evict such a page frame’s content. Assume the
x86 architecture.

b) (4 pts) How would you accurately determine whether a shared memory

page has been recently accessed? What changes, if any, would be
needed to your page or frame table designs?

We can now have multiple page table entries (in multiple processes) point to the
same frame table entry. Therefore, when determining recent access, we must
check all access bits in all page table entries referring to the page frame. Likely,
this will require expanding the frame table data structure: instead of having a
single back pointer to the (supplemental) page table entry pointing to it, you
would now need to keep track of a list of page table entries.

CS 3204 Sample Final Exam (Spring & Fall 2007)

3/8

c) (4 pts) How would you ensure that the TLB is kept consistent with the

entries in the hardware page directory/tables after a shared memory frame
has been evicted?

To ensure TLB consistency, all page table entries referring to an to-be-evicted
frame must be cleared before evicting it. If any of the referring page table entries
are part of the current process’s hardware page table, the TLB also has to be
flushed to evict now stale entries.

d) (2 pts) Where you would store evicted shared memory frames?

Evicted shared memory frames would need to be stored in swap space since
they are not directly related to frames. Alternatively, if you assume that
mmap_shared works like mmap(MAP_SHARED) in Unix, you could also state
that they would be written to the backing file.

e) (2 pts) Is it necessary to determine whether a shared memory page's
content is dirty before evicting it? If not, why not? If so, how would you do
it?

Both answers are possible:

o It’s not necessary to check the dirty bit since the data isn’t anywhere on
disk, so must be written regardless.

o It may be useful to check, but only if the page has been evicted before and

you keep track of where it was evicted to the last time. In that case, as in
the case of access bits, the dirty bits of all referring page table entries
must be checked.

3 Memory Performance (20 pts)
a) (8 pts) Recently, researchers have been working on kernels that can

support the dynamic variation of physical memory at runtime. Combined
with hardware support, machines running those kernels have the ability to
turn physical page frames on and off. To turn a frame off, its contents
have to be evicted to disk first. Below are two graphs that show application
performance vs. the amount of physical memory that is currently turned
on.

CS 3204 Sample Final Exam (Spring & Fall 2007)

4/8

i. (3 pts) What can you infer about the character of the workload used

in scenario A? (Be sure to discuss the workload, not just the graph.)

The workload shows a regular access pattern with good locality when it comes to
its virtual memory accesses. Adding more memory leads to a reduction in the
page fault rate.

ii. (3 pts) What can you infer about the character of the workload used

in scenario B?

This workload shows poor locality. For instance, the access pattern could be
irregular, fooling the page replacement policy of the OS.

iii. (2 pts) Why do both curves flatten out once the number of physical
frames exceeds a certain threshold?

At the threshold, all data is kept in physical memory – that is, the OS can assign
enough page frames to hold the applications’ working set in memory. Therefore,
the performance of virtual memory is equivalent to that of physical memory and
any memory-related performance bounds are removed.

b) (4 pts) Some versions of Unix support a system call mlock(2), which
allows a user to instruct the operating system to pin down (and not evict!)
a particular virtual memory page in physical memory. The number of
pages a particular user can lock in this manner is subject to an
administrator-defined limit.
Say why the number of pages must be limited in this manner!

A. B.

number of physical frames number of physical frames
perform

ance

perform
ance

CS 3204 Sample Final Exam (Spring & Fall 2007)

5/8

If not regulated, a user could drastically reduce the number of physical page
frames that is left for other applications, leading to reduced performance and, in
the worst case, thrashing.

c) (4 pts) (multi-oom) Consider the multi-oom test from project 2. To recap,
multi-oom spawns an identical copy of itself as a child process, then waits
for this child to terminate. multi-oom terminates if the child process could
not be spawned for any reason. It records the depth of the chain of child
processes it was able to create.

What would happen if you attempted to run multi-oom on a system that
supports page reclamation, such as your Pintos project 3 kernel?
Consider all system resources!

Once all user memory page frames are used, the system should continue
spawning children by evicting pages from other processes. Eventually, one of
two things will happen: the system could start thrashing, or, since creating a new
process also always allocates kernel memory that may not be subject to paging,
the kernel may run out of kernel memory (as it did in project 2).

d) (4 pts) The Linux kernel uses the buddy allocator scheme to manage its
physical page frames, even though this allocation scheme incurs much
higher internal and external fragmentation than, for instance, a first-fit or
best-fit allocator would.
Give 2 reasons for why it is used in this situation despite these
disadvantages!

i. Reason #1:

A buddy allocator is fast: it needs to check at most n lists (n=10 in Linux’s case)
to find a free block or determine that none is available.

ii. Reason #2:

Internal fragmentation does not matter here since the virtual memory hardware
does not support subpage mappings anyway, so entire pages must be used.
External fragmentation is not (very) important here since most requests are for
single page frames in this allocator (few kernel components require multiple,
physically contiguous pages.)

4 Buffer Caching (20 pts)
a) (6 pts) Microsoft’s latest OS, Vista, includes a feature called ReadyBoost.

ReadyBoost allows the memory of a flash drive to be used as a cache for
the hard disk’s swap space. Microsoft states that ReadyBoost is only used
for small, random reads and not for large, sequential reads. Explain why!

CS 3204 Sample Final Exam (Spring & Fall 2007)

6/8

ReadyBoost is used as a write-through cache, so all data is written to both flash
and the hard disk. Hard disks are preferred for sequential reads since doing so
usually incurs a single seek and rotational delay, following by a continuous
transfer from media. The hard disk’s media transfer speed exceeds the read
speed of a USB device.

b) (8 pts) Assume that you are using the LRU cache replacement policy, and
that the number of buffer cache entries is 5. Give an example of a
reference stream for which LRU will not be an optimal replacement policy.
Show your work (showing both LRU, and the optimal policy!)

Hint: A reference stream is a sequence of blocks that are accessed by a
program. For instance, if a file of length 4 blocks were read from start to
end, the resulting reference stream, expressed in block numbers, would
be 1, 2, 3, 4.

Looping accesses are an example of where LRU is not optimal. For instance,
consider the reference stream: 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6. The following table
shows which block, if any, a particular strategy would evict.
 1 2 3 4 5 6 1 2 3 4 5 6
LRU - - - - - 1 2 3 4 5 6 1
OPT - - - - - 5 - - - - * -
* any block except block 6

LRU incurs 7 misses, but an optimal strategy would only incur 2.

c) (6 pts) CVS stores the entire revision history of a file file.c in a single file
called file.c,v. To ensure checkins are atomic, it uses the following
strategy: a temporary file temp.c is created, based on the old file.c,v and
the to-be-checked-in changes. After the temporary file has been written
(via write(2)) and closed (via close(2)), the temporary file temp.c is
renamed to file.c,v. Assume that the underlying file system uses a Unix-
like approach to store files, directories, and inodes, and assume FFS-like
consistency semantics for its metadata operations (in particular, assume
that rename is atomic)!

Why could developers still lose the entire content of file.c,v in the event of
an interruption, such as a power outage?

Even though the changes to the directory and inode will have reached the disk
atomically, FFS does not guarantee that the file data itself has reached the disk.
Ensuring that would have required an explicit request (“fsync”).

5 File Systems (28 pts)
a) (5 pts) When would you choose RAID-1 over RAID-5?

CS 3204 Sample Final Exam (Spring & Fall 2007)

7/8

Compared to RAID-5, RAID-1 can provide you with higher read throughput if you
can spread requests over multiple disks. If requests can be scheduled based on
latency, it may also provide lower read latency. Also, when recovering after the
loss of a disk drive, RAID-1 usually outperforms RAID-5. Finally, you may not
want to pay the price if you need the redundancy, but not the additional capacity
of a RAID-5 configuration.

b) (8 pts) Some recent file system designs, such as ext4, use an extent-
based approach to reduce the per-file metadata overhead that is
encountered in a traditional Unix-like file system.

i. (4 pts) Provide a formula f(l) for the overhead of representing

metadata for a file of length l. State your assumptions and introduce
variables as needed!

Overhead for metadata representation in a Unix-like system includes the inode
and any needed index blocks. Assume that the number of indices stored per
index block is N. A key observation is that all data blocks are referred to by one
pointer, so the overhead can be roughly approximated by ceil(l/N). In addition,
every index block is referred to by one pointer, adding ceil(l/N^k) for k level of
depth.
Because a multi-level index uses one or multiple indices, depending on the
length l, the actual formula is more complicated. Assuming that a triple-indirect
blocks are used and assuming a sufficiently large l, the overhead would be 1
block for the inode containing D direct block pointers, 1 block for the single-
indirect index block, 1 block for the double-indirect block and N blocks for the
index blocks referred from the double-indirect block.

f(l) = 1 + 1 + (1 + N) + (1 + ceil(L/N^2) + ceil(L/N))

where L = l – D – N – N * N is the number of blocks that cannot be indexed using
the single and double-indirect indices. The dominating term here is L/N.

ii. (4 pts) What is the minimum (best-case) overhead that an
improved design such as the one proposed in ext4 could achieve?

The best case would be if the entire file were laid out contiguously in a single
extent, in which case we would need to keep only the start block and the length
as metadata, which, as in the Pintos base system, could probably be included in
the inode so no additional metadata blocks would be required.

c) (15 pts) Describe the trade-off between performance and consistency in
the area of file systems. Describe situations in which this trade-off matters
and which factors you may need to take into account when choosing or
designing a file system.

CS 3204 Sample Final Exam (Spring & Fall 2007)

8/8

Note: This question will be graded both for content/correctness (10 pts) and for
your ability to communicate effectively in writing (5 pts). Make sure you define the
trade-off clearly, and elaborate on its meaning and consequences. Your answer
should be well-written, organized, and clear.

The trade-off between performance and consistency arises from the enormous
difference between random memory and disk access speeds. This difference
forces the use of buffer caches, which keep copies of on-disk data in volatile
RAM. Updates to this data must eventually be propagated to disk to become
persistent. If there is an interruption while the data is kept in volatile RAM, it may
be lost.

The trade-off arises from the choice of time window between an update and
when the data is written to disk. Writing the data synchronously, or within a short
time window, ensures that the on-disk data is always consistent with in-memory
updates. This approach, however, leads to poor performance because
applications have to wait for the disk operations to complete when performing
updates. All update operations now proceed at disk speed, leading to processes
that are blocked from making progress, and indirectly to poor CPU and RAM
utilization. On the other hand, delaying the propagation of updates would improve
performance by allowing processes to proceed even before the data has been
written to disk, but consistency would be reduced, since the on-disk data may
now lag substantially behind the cached in-memory content.

For these reasons, most file systems and buffer cache implementation define a
set of consistency guarantees that allows them to recover the file system to a
well-defined state after an interruption. To achieve these guarantees, they either
use synchronous writes, journaling, or write ordering. Applications must explicitly
request performance-reducing synchronous writes if they wish to obtain
additional consistency guarantees.

