2 Overview

Definitions

How does OS execute processes?

How do kernel & processes interact
How does kernel switch between processes

How do interrupts fit in

What’s the difference between threads/processes

Process States

Priority Scheduling

Operating Systems

Intro to Processes 1

. Process

These are all possible definitions:

A program in execution

An instance of a program running on a computer

Schedulable entity (*)
Unit of resource ownership
Unit of protection

Execution sequence (*) + current state (*) + set of resources

(*) can be said of threads as well

Operating Systems

Intro to Processes 2




I Alternative definition Intro to Processes 3
Thread:

Execution sequence + CPU state (registers + stack)

Process:

n Threads + Resources shared by them (specifically: accessible heap memory, global
variables, file descriptors, etc.)

In most contemporary OS, n >= 1.

In Pintos, n=1: a process is a thread — as in traditional Unix.
Following discussion applies to both threads & processes.

Operating Systems

I Context Switching Intro to Processes 4

Multiprogramming: switch to another process if current process is (momentarily) blocked

Time-sharing: switch to another process periodically to make sure all process make equal
progress
this switch is called a context switch.

Must understand how it works
how it interacts with user/kernel mode switching

how it maintains the illusion of each process having the CPU to itself (process must not
notice being switched in and out!)

Operating Systems




il Single Program vs Multiprogramming

Intro to Processes 5

Program A Run Wait Run Wait
Time »
(a) Uniprogramming
Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
Combined R:“ R]';" Wait R:" R]';" Wait
Time
(b} Multiprogramming with two programs
Computer Science Dept Va Tech August 2007 Operating Systems 07 McQuain
I Context Switchi ng Intro to Processes 6

Timer interrupt: P1 is preempted,
context switch to P2

Process 1 "

Process 2

user mode

I/O device interrupt:
/ P2’s I/0O complete
3 switch back to P2

kernel mode

Kernel

/.

System call: (trap):
P2 starts 1/0 operation, blocks =
context switch to process 1

omputer Science Dept Va Tech August 2007

Operating Systems

—

Timer interrupt: P2 still has
time left, no context switch

-07 McQuain




I Aside: Kernel Threads Intro to Processes 7

Most OS (including Pintos) support kernel threads
that never run in user mode — in fact, in Project 1, all
Pintos threads run like that.

Process 1

Process 2 § § § —

user mode

kernel mode ' I

Kernel - / L ‘_‘ i

Kernel Thread

Careful: “kernel thread” not the same as
kernel-level thread (KLT) — more on KLT later

Operating Systems

M Mode Switching Intro to Processes 8

User — Kernel mode
For reasons external or internal to CPU

External (aka hardware) interrupt:
timer/clock chip, I/O device, network card, keyboard, mouse
asynchronous (with respect to the executing program)

Internal interrupt (aka software interrupt, trap, or exception)
are synchronous
can be intended: for system call (process wants to enter kernel to obtain services)

or unintended (usually): fault/exception (division by zero, attempt to execute privileged
instruction in user mode)

Kernel — User mode switch on iret instruction

Operating Systems




I Context vs Mode Switching Intro to Processes 9

Mode switch guarantees kernel gains control when needed
To react to external events
To handle error situations
Entry into kernel is controlled

Not all mode switches lead to context switches
Kernel code’s logic decides when — subject of scheduling

Mode switch always hardware supported
Context switch (typically) not — this means many options for implementing it!

Operating Systems

. Protection Intro to Processes 10

Multiprogramming requires isolation
OS must protect/isolate applications from each other, and OS from applications

This requirement is absolute
In Pintos also: if one application crashes, kernel should not! Bulletproof.

Three techniques
Preemption
Interposition
Privilege

Operating Systems




W Protection #1: Preemption Intro to Processes 11

Resource can be given to process and access can be revoked
Example: CPU, Memory, Printer, “abstract” resources: files, sockets

CPU Preemption using interrupts

Hardware timer interrupt invokes OS, OS checks if current process should be preempted,
done every 1ms in Linux

Solves infinite loop problem!

Q.: Does it work with all resources equally?

Operating Systems

I Protection #2: Interposition Intro to Processes 12
OS hides the hardware

Application have to go through OS to access resources

OS can interpose checks:
Validity (Address Translation)
Permission (Security Policy)
Resource Constraints (Quotas)

Operating Systems




W Protection #3: Privilege Intro to Processes 13

Two fundamental modes:
“kernel mode” — privileged
aka system, supervisor or monitor mode
Intel calls its PLO, Privilege Level 0 on x86
“user mode” — non-privileged
PL3 on x86

Bit in CPU - controls operation of CPU
Protection operations can only
be performed in kernel mode.
Example: hlt
Carefully control transitions
between user & kernel mode

int main()
{
asm(“hlt’);
}
Operating Systems
I OS as a Resource Manager Intro to Processes 14

OS provides illusions, examples:
every process is run on its own CPU
every process has all the memory of the machine (and more)
every process has its own I/O terminal

“Stretches” resources
Possible because resource usage is bursty, typically

Increases utilization

Operating Systems




I Resource Management Intro to Processes 15

Multiplexing increases complexity

Car Analogy (by Rosenblum):

Dedicated road per car would be incredibly inefficient, so cars share freeway. Must manage
this.

(abstraction) different lanes per direction
(synchronization) traffic lights
(increase capacity) build more roads

More utilization creates contention
(decrease demand) slow down
(backoff/retry) use highway during off-peak hours
(refuse service, quotas) force people into public transportation
(system collapse) traffic jams

Operating Systems

I Resource Management Intro to Processes 16

OS must decide who gets to use what resource
Approach 1: have admin (boss) tell it

Approach 2: have user tell it
What if user lies? What if user doesn’t know?

Approach 3: figure it out through feedback
Problem: how to tell power users from resource hogs?

Operating Systems




W Goals for Resource Management Intro to Processes 17

Fairness
Assign resources equitably

Differential Responsiveness
Cater to individual applications’ needs

Efficiency

Maximize throughput, minimize response time, support as many apps as you can

These goals are often conflicting.
All about trade-offs

Operating Systems




