
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

1Overview

Definitions

How does OS execute processes?
– How do kernel & processes interact
– How does kernel switch between processes
– How do interrupts fit in

What’s the difference between threads/processes

Process States

Priority Scheduling

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

2Process

These are all possible definitions:
– A program in execution
– An instance of a program running on a computer
– Schedulable entity (*)
– Unit of resource ownership
– Unit of protection
– Execution sequence (*) + current state (*) + set of resources

(*) can be said of threads as well

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

3Alternative definition

Thread:
– Execution sequence + CPU state (registers + stack)

Process:
– n Threads + Resources shared by them (specifically: accessible heap memory, global

variables, file descriptors, etc.)

In most contemporary OS, n >= 1.

In Pintos, n=1: a process is a thread – as in traditional Unix.
– Following discussion applies to both threads & processes.

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

4Context Switching

Multiprogramming: switch to another process if current process is (momentarily) blocked

Time-sharing: switch to another process periodically to make sure all process make equal
progress

– this switch is called a context switch.

Must understand how it works
– how it interacts with user/kernel mode switching
– how it maintains the illusion of each process having the CPU to itself (process must not

notice being switched in and out!)

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

5Single Program vs Multiprogramming

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

6Context Switching

Process 1

Process 2

Kernel

user mode

kernel mode

Timer interrupt: P1 is preempted,
context switch to P2

Timer interrupt: P1 is preempted,
context switch to P2

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

System call: (trap):
P2 starts I/O operation, blocks
context switch to process 1

I/O device interrupt:
P2’s I/O complete
switch back to P2

I/O device interrupt:
P2’s I/O complete
switch back to P2

Timer interrupt: P2 still has
time left, no context switch

Timer interrupt: P2 still has
time left, no context switch

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

7Aside: Kernel Threads

Process 1

Process 2

Kernel

user mode

kernel mode

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Most OS (including Pintos) support kernel threads
that never run in user mode – in fact, in Project 1, all
Pintos threads run like that.

Kernel Thread

Careful: “kernel thread” not the same as
kernel-level thread (KLT) – more on KLT later

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

8Mode Switching

User → Kernel mode
– For reasons external or internal to CPU

External (aka hardware) interrupt:
– timer/clock chip, I/O device, network card, keyboard, mouse
– asynchronous (with respect to the executing program)

Internal interrupt (aka software interrupt, trap, or exception)
– are synchronous
– can be intended: for system call (process wants to enter kernel to obtain services)
– or unintended (usually): fault/exception (division by zero, attempt to execute privileged

instruction in user mode)

Kernel → User mode switch on iret instruction

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

9Context vs Mode Switching

Mode switch guarantees kernel gains control when needed
– To react to external events
– To handle error situations
– Entry into kernel is controlled

Not all mode switches lead to context switches
– Kernel code’s logic decides when – subject of scheduling

Mode switch always hardware supported
– Context switch (typically) not – this means many options for implementing it!

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

10Protection

Multiprogramming requires isolation

OS must protect/isolate applications from each other, and OS from applications

This requirement is absolute
– In Pintos also: if one application crashes, kernel should not! Bulletproof.

Three techniques
– Preemption
– Interposition
– Privilege

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

11Protection #1: Preemption

Resource can be given to process and access can be revoked
– Example: CPU, Memory, Printer, “abstract” resources: files, sockets

CPU Preemption using interrupts
– Hardware timer interrupt invokes OS, OS checks if current process should be preempted,

done every 1ms in Linux
– Solves infinite loop problem!

Q.: Does it work with all resources equally?

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

12Protection #2: Interposition

OS hides the hardware

Application have to go through OS to access resources

OS can interpose checks:
– Validity (Address Translation)
– Permission (Security Policy)
– Resource Constraints (Quotas)

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

13Protection #3: Privilege

Two fundamental modes:
– “kernel mode” – privileged

aka system, supervisor or monitor mode
Intel calls its PL0, Privilege Level 0 on x86

– “user mode” – non-privileged
PL3 on x86

Bit in CPU – controls operation of CPU
– Protection operations can only

be performed in kernel mode.
Example: hlt

– Carefully control transitions
between user & kernel mode

int main()
{

asm(“hlt”);
}

int main()
{

asm(“hlt”);
}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

14OS as a Resource Manager

OS provides illusions, examples:
– every process is run on its own CPU
– every process has all the memory of the machine (and more)
– every process has its own I/O terminal

“Stretches” resources
– Possible because resource usage is bursty, typically

Increases utilization

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

15Resource Management

Multiplexing increases complexity

Car Analogy (by Rosenblum):
– Dedicated road per car would be incredibly inefficient, so cars share freeway. Must manage

this.
– (abstraction) different lanes per direction
– (synchronization) traffic lights
– (increase capacity) build more roads

More utilization creates contention
– (decrease demand) slow down
– (backoff/retry) use highway during off-peak hours
– (refuse service, quotas) force people into public transportation
– (system collapse) traffic jams

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

16Resource Management

OS must decide who gets to use what resource

Approach 1: have admin (boss) tell it

Approach 2: have user tell it
– What if user lies? What if user doesn’t know?

Approach 3: figure it out through feedback
– Problem: how to tell power users from resource hogs?

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Intro to Processes

Operating Systems

17Goals for Resource Management

Fairness
– Assign resources equitably

Differential Responsiveness
– Cater to individual applications’ needs

Efficiency
– Maximize throughput, minimize response time, support as many apps as you can

These goals are often conflicting.
– All about trade-offs

