
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

1Bounded Buffer w/ Monitor

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

2Bounded Buffer w/ Monitor

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

buffer::produce(item i)
{
while ((tail+1–head)%CAPACITY==0)

slots_avail.wait();
buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}
Q1.: How is lost update problem
avoided?

Q2.: Why while() and not if()?

lock_release(&mlock);
block_on(items_avail);
lock_acquire(&mlock);

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

3Implementing Condition Variables

State is just a queue of waiters:
– Wait(): adds current thread to (end of queue) & block
– Signal(): pick one thread from queue & unblock it

Hoare-style Monitors: gives lock directly to waiter
Mesa-style monitors (C, Pintos, Java): signaler keeps lock – waiter gets READY, but can’t enter
until signaler gives up lock

– Broadcast(): unblock all threads

Compare to semaphores:
– Condition variable signals are lost if nobody’s on the queue (semaphore’s V() are

remembered)
– Condition variable wait() always blocks (semaphore’s P() may or may not block)

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

4Monitors in C

POSIX Threads & Pintos

No compiler support, must do it manually
– must declare locks & condition vars
– must call lock_acquire/lock_release when entering&leaving the monitor
– must use cond_wait/cond_signal to wait for/signal condition

Note: cond_wait(&c, &m) takes monitor lock as parameter
– necessary so monitor can be left & reentered without losing signals

Pintos cond_signal() takes lock as well
– only as debugging help/assertion to check lock is held when signaling
– pthread_cond_signal() does not

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

5Mesa vs Hoare Style

Mesa-style:
– Cond_signal leaves signaling thread in monitor
– so must always use “while()” when checking loop condition
– POSIX Threads & Pintos are Mesa-style (and so are C# & Java)

Alternative is “Hoare”-style where cond_signal leads to exit from monitor and immediate
reentry of waiter

– Not commonly used

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

6Monitors in Java

synchronized block means
– enter monitor
– execute block
– leave monitor

wait()/notify() use condition variable
associated with receiver

– Every object in Java can function
as a condition var

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

7Per Brinch Hansen’s Criticism

See Java’s Insecure Parallelism [Brinch Hansen 1999]

Says Java abused concept of monitors because Java does not require all accesses to
shared variables to be within monitors

Why did designers of Java not follow his lead?
– Performance: compiler can’t easily decide if object is local or not - conservatively, would

have to make all public methods synchronized – pay at least cost of atomic instruction on
entering every time

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

8Readers/Writer w/ Monitor

struct lock mlock; // protects rdrs & wrtrs
int readers = 0, writers = 0;
struct condvar canread, canwrite;
void read_lock_acquire() {

lock_acquire(&mlock);
while (writers > 0)

cond_wait(&canread, &mlock);
readers++;
lock_release(&mlock);

}
void read_lock_release() {

lock_acquire(&mlock);
if (--readers == 0)

cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

struct lock mlock; // protects rdrs & wrtrs
int readers = 0, writers = 0;
struct condvar canread, canwrite;
void read_lock_acquire() {

lock_acquire(&mlock);
while (writers > 0)

cond_wait(&canread, &mlock);
readers++;
lock_release(&mlock);

}
void read_lock_release() {

lock_acquire(&mlock);
if (--readers == 0)

cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

void write_lock_acquire() {
lock_acquire(&mlock);
while (readers > 0 || writers > 0)

cond_wait(&canwrite, &mlock);
writers++;
lock_release(&mlock);

}

void write_lock_release() {
lock_acquire(&mlock);
writers--;
ASSERT(writers == 0);
cond_signal(&canread, &mlock);
cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

void write_lock_acquire() {
lock_acquire(&mlock);
while (readers > 0 || writers > 0)

cond_wait(&canwrite, &mlock);
writers++;
lock_release(&mlock);

}

void write_lock_release() {
lock_acquire(&mlock);
writers--;
ASSERT(writers == 0);
cond_signal(&canread, &mlock);
cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

Q.: does this implementation prevent starvation?Q.: does this implementation prevent starvation?

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

9Summary

Semaphores & Monitors are both higher-level constructs

Monitors can be included in a language (Mesa, Java)
– in C, however, they are just a programming pattern that involves a structured way

of using mutex+condition variables

When should you use which?

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Synchronization

Operating Systems

10High vs Low Level Synchronization

As we’ve seen, bounded buffer can be solved with higher-level synchronization
primitives

– semaphores and monitors

In Pintos kernel, one could also use thread_block/unblock directly
– this is not always efficiently possible in other concurrent environments

Q.: when should you use low-level synchronization (a la thread_block/thread_unblock)
and when should you prefer higher-level synchronization?

A.: Except for the simplest scenarios, higher-level synchronization abstractions are
always preferable

– They’re well understood; make it possible to reason about code.

