M Rendezvous

Synchronization 1

A needs to be sure B has advanced to point L, B needs to be sure A has advanced to L

semaphore A_madeit(0);

A_rendezvous_with_B()

{
sema_up(A_madeit);
sema_down(B_madeit);

}

semaphore B_madeit(0);

B_rendezvous_with_A()

{
sema_up(B_madeit);
sema_down(A_madeit);

}

Operating Systems

| Waiting for an activity to finish

Synchronization 2

semaphore done_with_task(0);
thread_create(
do_task,
(void*)&done_with_task);

sema_down(done_with_task);
Il safely access task’s results

void

do_task(void *arg)

{
semaphore *s = arg;
[* do the task */
sema_up(*s);

}

Works no matter which thread is scheduled first after thread create (parent or child)

Elegant solution that avoids the need to share a “have done task” flag between parent &

child

Two applications of this technique in Pintos Project 2
signal successful process startup (“exec”) to parent

signal process completion (“exit”) to parent

Operating Systems

H Dining Philosophers (Dijkstra) Synchronization 3

A classic

5 Philosophers, 1 bowl of spaghetti
Philosophers (threads) think & eat ad
infinitum

Need left & right fork to eat (1?)

Want solution that prevents starvation &
does not delay hungry philosophers
unnecessarily

Operating Systems

| Dining Philosophers (1) Synchronization 4

semaphore fork[0..4](1);
philosopher(int i) Il'iis 0..4
{
while (true) {
/* think ... finally */

sema_down(fork[i]); /I get left fork
sema_down(fork[(i+1)%5]); // get right fork
[* eat */
sema_up(fork[i]); /l put down left fork
sema_up(fork[(i+1)%5]); /Il put down right fork
}
}

What is the problem with this solution?
Deadlock if all pick up left fork

Operating Systems

H Dining Philosophers (2) Synchronization 5

semaphore fork[0..4](1);

semaphore at_table(4); // allow at most 4 to fight for

forks

philosopher(int i) /liis 0..4

{

while (true) {

/* think ... finally */
sema_down(at_table); /I sit down at table
sema_down(fork([i]); I get left fork
sema_down(fork[(i+1)%5]); // get right fork
[* eat ... finally */

sema_up(fork]i]); // put down left fork
sema_up(fork[(i+1)%5]); /I put down right fork
sema_up(at_table); I/l get up
}
}
Operating Systems
I Monitors

Synchronization 6

A monitor combines a set of shared variables & operations to access them
Think of an enhanced C++ class with no public fields

A monitor provides implicit synchronization (only one thread can access private variables
simultaneously)

Single lock is used to ensure all code associated with monitor is within critical section
A monitor provides a general signaling facility

Wait/Signal pattern (similar to, but different from semaphores)
May declare & maintain multiple signaling queues

Operating Systems

I Monitors (cont’d)

Synchronization 7

Classic monitors are embedded in programming language
Invented by Hoare & Brinch-Hansen 1972/73
First used in Mesa/Cedar System @ Xerox PARC 1978

Limited version available in Java/C#

(Classic) Monitors are safer than semaphores
can’t forget to lock data — compiler checks this

In contemporary C, monitors are a synchronization pattern that is achieved using locks &

condition variables

Must understand monitor abstraction to use it

Operating Systems

I Infinite Buffer w/ Monitor

Synchronization 8

monitor buffer {
[* implied: struct lock
mlock;*/
private:
char buffer(];
int head, tail;
public:
produce(item);
item consume();

buffer::produce(item i)
{ /* try {lock_acquire(&mlock); */
buffer[head++] = i;
[* } finally {lock_release(&mlock);} */
}

buffer::consume()
{ /* try {lock_acquire(&mlock); */
return bufferftail++];
[* } finally {lock_release(&mlock);}
*/
}

Monitors provide implicit protection for their internal variables
Still need to add the signaling part

Operating Systems

I Condition Variables Synchronization 9

Variables used by a monitor for signaling a condition
a general (programmer-defined) condition, not just integer increment as with semaphores

The actual condition is typically some boolean predicate of monitor variables, e.g.
“buffer.size > 0”

Monitor can have more than one condition variable

Three operations:
Wait(): leave monitor, wait for condition to be signaled, reenter monitor
Signal(): signal one thread waiting on condition
Broadcast(): signal all threads waiting on condition

Operating Systems

