
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

1Recap: Synchronization

Disabling IRQs – use to protect against concurrent access by IRQ handler

Locks – use to protect against concurrent access by other threads

Direct implementation of locks on uniprocessor
– Requires disable_preemption
– Involves state change of thread if contended

Today: multiprocessor locks, locking strategies

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

2Multiprocessor Locks

Can’t stop threads running on other processors
– too expensive (interprocessor irq)
– also would create conflict with protection (locking = unprivileged op, stopping =

privileged op), involving the kernel in *every* acquire/release

Instead: use atomic instructions provided by hardware
– E.g.: test-and-set, atomic-swap, compare-and-exchange, fetch-and-add
– All variations of “read-and-modify” theme

Locks are built on top of these

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

3Atomic Swap

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

// In C, an atomic swap instruction would like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

CPU1CPU1 CPU2CPU2

MemoryMemory

memory bus

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

4Spinlocks

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Thread spins until it acquires lock
– Q1: when should it block instead?
– Q2: what if spin lock holder is preempted?

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

5Spinning vs Blocking

Blocking has a cost
– Shouldn’t block if lock becomes available in less time than it takes to block

Strategy: spin for time it would take to block
– Even in worst case, total cost for lock_acquire is less than 2*block time

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

6Spinlocks vs Disabling Preemption

What if spinlocks were used on single CPU? Consider:
– thread 1 takes spinlock
– thread 1 is preempted
– thread 2 with higher priority runs
– thread 2 tries to take spinlock, finds it taken
– thread 2 spins forever → deadlock!

Thus in practice, usually combine spinlocks with disabling preemption
– E.g., spin_lock_irqsave() in Linux

UP kernel: reduces to disable_preemption
SMP kernel: disable_preemption + spinlock

Spinlocks are used when holding resources for small periods of time (same rule
as for when it’s ok to disable irqs)

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

7Spinlocks (Faster)

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Only try “expensive” atomic_swap instruction if you’ve seen lock in unlocked
state

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

8Locks: Ownership & Recursion

Locks typically (not always) have notion of ownership
– Only lock holder is allowed to unlock
– See Pintos lock_held_by_current_thread()

What if lock holder tries to acquire locks it already holds?
– Nonrecursive locks: deadlock!
– Recursive locks:

inc counter
dec counter on lock_release
release when zero

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2003-07 Back

Synchronization

Operating Systems

9Implementing Locks: Practical Issues

How expensive are locks?

Two considerations:
– Cost to acquire uncontended lock

UP Kernel: disable/enable irq + memory access
In other scenarios: needs atomic instruction (relatively expensive in terms of processor
cycles, especially if executed often)

– Cost to acquire contended lock
Spinlock: blocks current CPU entirely (if no blocking is employed)
Regular lock: cost at least two context switches, plus associated management overhead

Conclusions
– Optimizing uncontended case is important
– “Hot locks” can sack performance easily

