
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

1Overview

Will talk about locks, semaphores, and monitors/condition variables

For each, will talk about:
– What abstraction they represent
– How to implement them
– How and when to use them

Two major issues:
– Mutual exclusion
– Scheduling constraints

Project note: Pintos implements its locks on top of semaphores

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

2A Race Condition

Thread 1
movl counter, %eax

incl %eax
movl %eax, counter

Thread 2

movl counter,%eax
incl %eax

movl %eax,counter

IRQ
OS decides to
context switch

%eax – Thread 1’s copy
%eax – Thread 2’s copy
counter – global variable, shared

IRQ

tim
e

IRQ

0
0

1
1

1

1
Final result: counter is 1, should be 2

Assume counter == 0 initially

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

3Race Conditions

Definition: two or more threads read and write a shared variable, and final result
depends on the order of the execution of those threads

Usually timing-dependent and intermittent
– Hard to debug

Not a race condition if all execution orderings lead to same result
– Chances are high that you misjudge this

How to deal with race conditions:
– Ignore (!?)

Can be ok if final result does not need to be accurate
Never an option in CS 3204

– Don’t share: duplicate or partition state
– Avoid “bad interleavings” that can lead to wrong result

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

4Not Sharing: Duplication or Partitioning

Undisputedly best way to avoid race conditions
– Always consider it first
– Usually faster than alternative of sharing + protecting
– But duplicating has space cost; partitioning can have management cost
– Sometimes must share (B depends on A’s result)

Examples:
– Each thread has its own counter (then sum counters up after join())
– Every CPU has its own ready queue
– Each thread has its own memory region from which to allocate objects

Truly ingenious solutions to concurrency involve a way to partition things people
originally thought you couldn’t

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

5Aside: Thread-Local Storage
A concept that helps to avoid race conditions by giving each thread a copy of a certain

piece of state

Recall:
– All local variables are already thread-local

But their extent is only one function invocation
– All function arguments are also thread-local

But must pass them along call-chain

TLS creates variables of which there’s a separate value for each thread.

In PThreads/C (compiler or library-supported)
– Dynamic: pthread_create_key(), pthread_get_key(), pthread_set_key()

E.g. myvalue = keytable(key_a)→get(pthread_self());
– Static: using __thread storage class

E.g.: __thread int x;

Java: java.lang.ThreadLocal

In Pintos:
Add member to struct thread

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

6Race Condition & Execution Order

Prevent race conditions by imposing constraints on execution order so the final
result is the same regardless of actual execution order

– That is, exclude “bad” interleavings
– Specifically: disallow other threads to start updating shared variables while one

thread is in the middle of doing so; make those updates atomic – threads either
see old or new value, but none in between

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

7Atomicity & Critical Sections

Atomic: indivisible
– Certain machine instructions are atomic
– But need to create larger atomic sections

Critical Section
– A synchronization technique to ensure atomic execution of a segment of code

Requires entry() and exit() operations

pthread_mutex_lock(&lock); /* entry() */
counter++;
pthread_mutex_unlock(&lock); /* exit() */

pthread_mutex_lock(&lock); /* entry() */
counter++;
pthread_mutex_unlock(&lock); /* exit() */

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

8Critical Sections

Critical Section Problem also known as mutual exclusion problem

Only one thread can be inside critical section; others attempting to enter CS must wait
until thread that’s inside CS leaves it.

Note: a critical section does not necessarily imply that thread executes section without
interruption (i.e., preemption), or even that thread completes section – just that other
threads can’t enter this critical section while one thread is inside it/hasn’t left it

Solutions can be entirely software, or entirely hardware
– Usually combined
– Different solutions for uniprocessor vs multiprocessor scenarios

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

9Implementing Critical Sections

Will look at:
– Disabling interrupts approach
– Semaphores
– Locks

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

10Disabling Interrupts

All asynchronous context switches start
with interrupts

– So disable interrupts to avoid them!

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

void intr_set_level(intr_level to)
{

if (to == INTR_ON)
intr_enable();

else
intr_disable();

}

void intr_set_level(intr_level to)
{

if (to == INTR_ON)
intr_enable();

else
intr_disable();

}

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

11Handling CS by avoiding context switches: Variation (1)

Variation of “disabling-interrupts”
technique

– That doesn’t actually disable interrupts
– If IRQ happens, ignore it

Assumes writes to “taking_interrupts” are
atomic and sequential wrt reads

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

intr_entry()
{

if (!taking_interrupts)
iret

intr_handle();
}

intr_entry()
{

if (!taking_interrupts)
iret

intr_handle();
}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

12Handling CS by avoiding context switches: Variation (2)

Code on previous slide could lose
interrupts

– Remember pending interrupts and
check when leaving critical section

This technique can be used with Unix
signal handlers (which are like “interrupts”
sent to a Unix process)

– but tricky to get right

taking_interrupts = false;
/* modify shared data */
if (irq_pending)

intr_handle();
taking_interrupts = true;

taking_interrupts = false;
/* modify shared data */
if (irq_pending)

intr_handle();
taking_interrupts = true;

intr_entry()
{

if (!taking_interrupts) {
irq_pending = true;
iret

}
intr_handle();

}

intr_entry()
{

if (!taking_interrupts) {
irq_pending = true;
iret

}
intr_handle();

}

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

13Avoiding context switches: Variation (3)

Instead of setting flag, have irq handler
examine PC where thread was interrupted
See Bershad ’92: Fast Mutual Exclusion
on Uniprocessors

critical_section_start:
/* modify shared data */

critical_section_end:

critical_section_start:
/* modify shared data */

critical_section_end:

intr_entry()
{

if (PC in (critical_section_start,
critical_end_end)) {

iret
}
intr_handle();

}

intr_entry()
{

if (PC in (critical_section_start,
critical_end_end)) {

iret
}
intr_handle();

}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

14Disabling Interrupts: Summary

(this applies to all variations)
Sledgehammer solution

Infinite loop means machine locks up

Use this to protect data structures from concurrent access by interrupt handlers
– Keep sections of code where irqs are disabled minimal (nothing else can happen until irqs

are reenabled – latency penalty!)
– If you block (give up CPU) mutual exclusion with other threads is not guaranteed

Any function that transitively calls thread_block() may block

Want something more fine-grained
– Key insight: don’t exclude everybody else, only those contending for the same critical

section

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

15Critical Section Problem

A solution for the CS Problem must
1) Provide mutual exclusion: at most one thread can be inside CS
2) Guarantee Progress: (no deadlock)

if more than one threads attempt to enter, one will succeed
ability to enter should not depend on activity of other threads not currently in CS

3) Bounded Waiting: (no starvation)
A thread attempting to enter critical section eventually will (assuming no thread spends
unbounded amount of time inside CS)

A solution for CS problem should be
– Fair (make sure waiting times are balanced)
– Efficient (not waste resources)
– Simple

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

16Locks

Thread that enters CS locks it
– Others can’t get in and have to wait

Thread unlocks CS when leaving it
– Lets in next thread
– which one?

FIFO guarantees bounded waiting
Highest priority in Proj1

Can view Lock as an abstract data type
– Provides (at least) init, acquire, release lock

unlock

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

17Implementing Locks

Locks can be implemented directly, or – among other options - on top of
semaphores

– If implemented on top of semaphores, then semaphores must be implemented
directly

– Will explain this layered approach first to help in understanding project code
– Issues in direct implementation of locks apply to direct implementation of

semaphores as well

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

18Semaphores

Invented by Edsger Dijkstra in 1960s

Counter S, initialized to some value, with two operations:
– P(S) or “down” or “wait” – if counter greater than zero, decrement. Else wait until greater

than zero, then decrement
– V(S) or “up” or “signal” – increment counter, wake up any threads stuck in P.

Semaphores don’t go negative:
– #V + InitialValue - #P >= 0

Note: direct access to counter value after initialization is not allowed

Counting vs Binary Semaphores
– Binary: counter can only be 0 or 1

Simple to implement, yet powerful
– Can be used for many synchronization problems

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

19Semaphores as Locks

Semaphores can be used to build
locks

– Pintos does just that

Must initialize semaphore with 1 to
allow one thread to enter critical
section

Easily generalized to allow at most N simultaneous threads: multiplex pattern (i.e., a
resource can be accessed by at most N threads)

semaphore S(1); // allows initial down

lock_acquire()
{ // try to decrement, wait if 0

sema_down(S);
}

lock_release()
{ // increment (wake up waiters if any)

sema_up(S);
}

semaphore S(1); // allows initial down

lock_acquire()
{ // try to decrement, wait if 0

sema_down(S);
}

lock_release()
{ // increment (wake up waiters if any)

sema_up(S);
}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

20Implementing Locks Directly

NB: Same technique applies to implementing semaphores directly (as in done in Pintos)
– Will see two applications of the same technique

Different solutions exist to implement locks for uniprocessor and multiprocessors

Will talk about how to implement locks for uniprocessors first – next slides all assume
uniprocessor

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

21Implementing Locks, Take 1

Does this work?

lock_acquire(struct lock *l)
{

while (l->state == LOCKED)
continue;

l->state = LOCKED;
}

lock_acquire(struct lock *l)
{

while (l->state == LOCKED)
continue;

l->state = LOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

No – does not guarantee mutual exclusion property – more than one
thread may see “state” in UNLOCKED state and break out of while
loop. This implementation has itself a race condition.

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

22Implementing Locks, Take 2

Does this work?

lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED)

continue;
l->state = LOCKED;
enable_preemption();

}

lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED)

continue;
l->state = LOCKED;
enable_preemption();

}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

No – does not guarantee progress property. If one thread enters the
while loop, no other thread will ever be scheduled since preemption
is disabled – in particular, no thread that would call lock_release will
ever be scheduled.

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

23Implementing Locks, Take 3

Does this work?

lock_acquire(struct lock *l)
{

while (true) {
disable_preemption();
if (l->state == UNLOCKED) {

l->state = LOCKED;
enable_preemption();
return;

}
enable_preemption();

}
}

lock_acquire(struct lock *l)
{

while (true) {
disable_preemption();
if (l->state == UNLOCKED) {

l->state = LOCKED;
enable_preemption();
return;

}
enable_preemption();

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

Yes, this works – but is grossly
inefficient. A thread that
encounters
the lock in the LOCKED state
will busy wait until it is
unlocked,
needlessly using up CPU time.

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

C & S

Operating Systems

24Implementing Locks, Take 4

lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED) {

list_push_back(l->waiters,
¤t->elem);

thread_block(current);
}
l->state = LOCKED;
enable_preemption();

}

lock_acquire(struct lock *l)
{

disable_preemption();
while (l->state == LOCKED) {

list_push_back(l->waiters,
¤t->elem);

thread_block(current);
}
l->state = LOCKED;
enable_preemption();

}

lock_release(struct lock *l)
{

disable_preemption();
l->state = UNLOCKED;
if (list_size(l->waiters) > 0)

thread_unblock(
list_entry(list_pop_front(l->waiters),

struct thread, elem));
enable_preemption();

}

lock_release(struct lock *l)
{

disable_preemption();
l->state = UNLOCKED;
if (list_size(l->waiters) > 0)

thread_unblock(
list_entry(list_pop_front(l->waiters),

struct thread, elem));
enable_preemption();

}

Correct & uses proper blocking.
Note that thread doing the unlock performs the work of unblocking
the first waiting thread.

