2 Overview c&s 1

Will talk about locks, semaphores, and monitors/condition variables

For each, will talk about:
What abstraction they represent
How to implement them
How and when to use them

Two major issues:
Mutual exclusion
Scheduling constraints

Project note: Pintos implements its locks on top of semaphores

iter Science Dept Va Tech August 2007 Operating Systems 2003-07 McQuain
M A Race Condition cas 2
Thread 1
movl counter, %eax
IRQ %4
. Thread 2

. , OS decides to

incl %ocax context switch

movl %eax, counter movl counter,%eax

/ 5) \ .
incl %eax

time

ras A2
@ / movl %eax,count%
oy R
Y%eax — Thread 1’s copy

%eax — Thread 2's copy Assume counter == 0 initially b
counter — global variable, shared Final result: counter is 1, should be 2

omputer Science Dept Va Tech August 2007 Operating Systems 03-07 McQuain

I Race Conditions C&S

Definition: two or more threads read and write a shared variable, and final result
depends on the order of the execution of those threads

Usually timing-dependent and intermittent
Hard to debug

Not a race condition if all execution orderings lead to same result
Chances are high that you misjudge this

How to deal with race conditions:
Ignore (1?)
Can be ok if final result does not need to be accurate
Never an option in CS 3204
Don’t share: duplicate or partition state
Avoid “bad interleavings” that can lead to wrong result

Operating Systems

. Not Sharing: Duplication or Partitioning C&S

Undisputedly best way to avoid race conditions
Always consider it first
Usually faster than alternative of sharing + protecting
But duplicating has space cost; partitioning can have management cost
Sometimes must share (B depends on A’s result)

Examples:
Each thread has its own counter (then sum counters up after join())
Every CPU has its own ready queue
Each thread has its own memory region from which to allocate objects

Truly ingenious solutions to concurrency involve a way to partition things people
originally thought you couldn’t

Operating Systems

W Aside: Thread-Local Storage c&s 5

A concept that helps to avoid race conditions by giving each thread a copy of a certain
piece of state

Recall:
All local variables are already thread-local
But their extent is only one function invocation
All function arguments are also thread-local
But must pass them along call-chain

TLS creates variables of which there’s a separate value for each thread.

In PThreads/C (compiler or library-supported)
Dynamic: pthread_create_key(), pthread_get_key(), pthread_set_key()
E.g. myvalue = keytable(key_a)—>get(pthread_self());
Static: using __thread storage class
E.g.: thread int x;

Java: java.lang. ThreadLocal

In Pintos:
Add member to struct thread

Operating Systems

I Race Condition & Execution Order c&s 6

Prevent race conditions by imposing constraints on execution order so the final
result is the same regardless of actual execution order
That is, exclude “bad” interleavings

Specifically: disallow other threads to start updating shared variables while one
thread is in the middle of doing so; make those updates atomic — threads either
see old or new value, but none in between

Operating Systems

H Atomicity & Critical Sections cas 7

Atomic: indivisible
Certain machine instructions are atomic

But need to create larger atomic sections

Critical Section

A synchronization technique to ensure atomic execution of a segment of code
Requires entry() and exit() operations

pthread_mutex_lock(&lock); /* entry() */
counter++;
pthread_mutex_unlock(&lock); /* exit() */

Operating Systems

I Critical Sections cas 8

Critical Section Problem also known as mutual exclusion problem

Only one thread can be inside critical section; others attempting to enter CS must wait
until thread that’s inside CS leaves it.

Note: a critical section does not necessarily imply that thread executes section without
interruption (i.e., preemption), or even that thread completes section — just that other
threads can’t enter this critical section while one thread is inside it/hasn’t left it

Solutions can be entirely software, or entirely hardware
Usually combined
Different solutions for uniprocessor vs multiprocessor scenarios

Operating Systems

| Implementing Critical Sections

Will look at:
Disabling interrupts approach
Semaphores
Locks

Operating Systems

c&s 9

I Disabling Interrupts

All asynchronous context switches start
with interrupts

So disable interrupts to avoid them!

c&s 10

intr_level old = intr_disable();
/* modify shared data */
intr_set_level(old);

Operating Systems

void ian_set_IeveI(intr_IeveI to)
{
if (fo == INTR_ON)
intr_enable();
else
intr_disable();

. Handling CS by avoiding context switches: Variation (1) c&s 11

Variation of “disabling-interrupts”
technique

That doesn’t actually disable interrupts
If IRQ happens, ignore it

Assumes writes to “taking_interrupts” are
atomic and sequential wrt reads

Operating Systems

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

intr_entry()
{
if (Itaking_interrupts)
iret
intr_handle();

}

. Handling CS by avoiding context switches:

Code on previous slide could lose
interrupts

Remember pending interrupts and

Variation (2) c&s 12

check when leaving critical section

This technique can be used with Unix
signal handlers (which are like “interrupts”
sent to a Unix process)

but tricky to get right

taking_interrupts = false;
/* modify shared data */
if (irg_pending)
intr_handle();
taking_interrupts = true;

intr_entry()

if (Itaking_interrupts) {
irg_pending = true;
iret

}

intr_handle();

}

Operating Systems

. Avoiding context switches: Variation (3) c&s 13

Instead of setting flag, have irq handler
examine PC where thread was interrupted

See Bershad ’92:

critical_section_start:
/* modify shared data */
critical_section_end:

intr_entry()
if (PC in (critical_section_start,
critical_end_end)) {
iret

intr_handle();

}

Operating Systems

I Disabling Interrupts: Summary ca&s 14

(this applies to all variations)
Sledgehammer solution

Infinite loop means machine locks up

Use this to protect data structures from concurrent access by interrupt handlers

Keep sections of code where irqs are disabled minimal (nothing else can happen until irqs
are reenabled — latency penalty!)

If you block (give up CPU) mutual exclusion with other threads is not guaranteed
Any function that transitively calls thread block() may block

Want something more fine-grained

Key insight: don’t exclude everybody else, only those contending for the same critical
section

Operating Systems

I Critical Section Problem c&s 15

A solution for the CS Problem must
1) Provide mutual exclusion: at most one thread can be inside CS
2) Guarantee Progress: (no deadlock)
m if more than one threads attempt to enter, one will succeed
m ability to enter should not depend on activity of other threads not currently in CS
3) Bounded Waiting: (no starvation)

m A thread attempting to enter critical section eventually will (assuming no thread spends
unbounded amount of time inside CS)

A solution for CS problem should be
Fair (make sure waiting times are balanced)
Efficient (not waste resources)
Simple

Operating Systems

™ Locks c&s 16

Thread that enters CS locks it
Others can’t get in and have to wait

Thread unlocks CS when leaving it
Lets in next thread
which one?
FIFO guarantees bounded waiting
Highest priority in Proj1

Can view Lock as an abstract data type
Provides (at least) init, acquire, release lock

unlock

Operating Systems

H Implementing Locks cas 17

Locks can be implemented directly, or — among other options - on top of
semaphores

If implemented on top of semaphores, then semaphores must be implemented
directly

Will explain this layered approach first to help in understanding project code

Issues in direct implementation of locks apply to direct implementation of
semaphores as well

Operating Systems

I Semaphores ces 18
Invented by Edsger Dijkstra in 1960s

Counter S, initialized to some value, with two operations:

P(S) or “down” or “wait” — if counter greater than zero, decrement. Else wait until greater
than zero, then decrement

V(S) or “up” or “signal” — increment counter, wake up any threads stuck in P.

Semaphores don’t go negative:
#V + InitialValue - #P >= 0

Note: direct access to counter value after initialization is not allowed

Counting vs Binary Semaphores
Binary: counter can only be 0 or 1

Simple to implement, yet powerful
Can be used for many synchronization problems

Operating Systems

H Semaphores as Locks c&s 19

Semaphores can be used to build
locks

Pintos does just that semaphore S(1); // allows initial down

lock_acquire()
{ /I try to decrement, wait if 0
sema_down(S);

Must initialize semaphore with 1 to
allow one thread to enter critical
section

}

lock_release()
{ /l'increment (wake up waiters if any)
sema_up(S);

}

Easily generalized to allow at most N simultaneous threads: multiplex pattern (i.e., a
resource can be accessed by at most N threads)

Operating Systems

M Implementing Locks Directly ces 20

NB: Same technique applies to implementing semaphores directly (as in done in Pintos)

Will see two applications of the same technique
Different solutions exist to implement locks for uniprocessor and multiprocessors

Will talk about how to implement locks for uniprocessors first — next slides all assume
uniprocessor

Operating Systems

| Implementing Locks, Take 1

c&s 21

lock_acquire(struct lock *I)

while (I->state == LOCKED)
continue;
|->state = LOCKED;

}

lock_release(struct lock *I)

I->state = UNLOCKED;
t

Does this work?

Operating Systems

No — does not guarantee mutual exclusion property — more than one
thread may see “state” in UNLOCKED state and break out of while
loop. This implementation has itself a race condition.

I Implementing Locks, Take 2

cC&s 22

lock_acquire(struct lock *I)
{
disable_preemption();
while (I->state == LOCKED)
continue;
|->state = LOCKED;
enable_preemption();

lock_release(struct lock *I)

|->state = UNLOCKED;
}

Does this work?

ever be scheduled.

Operating Systems

No — does not guarantee progress property. If one thread enters the
while loop, no other thread will ever be scheduled since preemption
is disabled — in particular, no thread that would call lock _release will

| Implementing Locks, Take 3

c&s 23

lock_acquire(struct lock *I)

while (true) {

disable_preemption();

if (I->state == UNLOCKED) {
|->state = LOCKED;
enable_preemption();
return;

}

enable_preemption();

}

}

lock_release(struct lock *I)

|->state = UNLOCKED;
}

Does this work?

Yes, this works — but is grossly
inefficient. A thread that
encounters

the lock in the LOCKED state
will busy wait until it is
unlocked,

needlessly using up CPU time.

Operating Systems

I Implementing Locks, Take 4

C&s 24

lock_acquire(struct lock *I)

disable_preemption();

while (I->state == LOCKED) {
list_push_back(l->waiters,

¤t->elem);

thread_block(current);

}

|->state = LOCKED;

enable_preemption();

}

lock_release(struct lock *I)
{
disable_preemption();
|->state = UNLOCKED;
if (list_size(I->waiters) > 0)
thread_unblock(
list_entry(list_pop_front(I->waiters),
struct thread, elem));
enable_preemption();

}

Correct & uses proper blocking.

Note that thread doing the unlock performs the work of unblocking

the first waiting thread.

Operating Systems

