
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

1PCB vs TCB

In 1:1 systems (Pintos), TCB==PCB
– struct thread

– add information there as projects progress

struct thread
{
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name. */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem elem; /* List element. */
/* others you’ll add as needed. */

};

In 1:n systems:
– TCB contains execution state of thread + scheduling information + link to PCB

for process to which thread belongs
– PCB contains identifier, plus information about resources shared by all threads

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

2Steps in context switch: high-level

Save the current process’s execution state to its PCB

Update current’s PCB as needed

Choose next process N

Update N’s PCB as needed

Restore N’s PCB execution state

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

3Execution State

Saving/restoring execution state is highly tricky:
– Must save state without destroying it

Registers
– On x86: eax, ebx, ecx, …

Stack
– Special area in memory that holds activation records: e.g., the local (automatic) variables of

all function calls currently in progress
– Saving the stack means retaining that area & saving a pointer to it (“stack pointer” = esp)

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

4The Stack, seen from C/C++

Q.: which of these variables are stored on the stack, and which are not?

void func(int d)
{
static int e;
int f;
struct S w;
int *g = new int[10];

}

int a;
static int b;
int c = 5;
struct S
{
int t;

} s;

A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]
A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, c, s (including s.t), e, g[0]…g[9]

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

5Switching Procedures

Inside kernel, context switch is implemented in some procedure (function) called from C
code

– Appears to caller as a procedure call

Must understand how to switch procedures (call/return)

Procedure calling conventions
– Architecture-specific
– Defined by ABI (application binary interface), implemented by compiler
– Pintos uses SVR4 ABI

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

6x86 Calling Conventions

Caller saves caller-saved registers as needed

Caller pushes arguments, right-to-left on stack
via push assembly instruction

Caller executes CALL instruction: save address
of next instruction & jump to callee

Callee executes:
– Saves callee-saved registers if they’ll

be destroyed
– Puts return value (if any) in eax

Callee returns: pop return address from stack &
jump to it

Caller resumes: pop arguments off the stack
Caller restores caller-saved registers, if any

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

7Example

int globalvar;

int
callee(int a, int b)
{

return a + b;
}

int
caller(void)
{

return callee(5, globalvar);
}

callee:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
leave
ret

caller:
pushl %ebp
movl %esp, %ebp
pushl globalvar
pushl $5
call callee
popl %edx
popl %ecx
leave
ret

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

8Pintos Context Switch (1)

threads/thread.c, threads/switch.S

static void
schedule (void)
{
struct thread *cur = running_thread ();
struct thread *next = next_thread_to_run ();
struct thread *prev = NULL;
if (cur != next)
prev = switch_threads (cur, next);

retlabel: /* not in actual code */
schedule_tail (prev);

}

uint32_t thread_stack_ofs = offsetof (struct thread, stack);

Stack
…

next
cur

&retlabelesp

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

9
Pintos Context Switch (2)

switch_threads:
Save caller's register state.
Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,
but requires us to preserve %ebx, %ebp, %esi, %edi.
pushl %ebx; pushl %ebp; pushl %esi; pushl %edi

Get offsetof (struct thread, stack).
mov thread_stack_ofs, %edx

Save current stack pointer to old thread's stack.
movl SWITCH_CUR(%esp), %eax
movl %esp, (%eax,%edx,1)

Restore stack pointer from new thread's stack.
movl SWITCH_NEXT(%esp), %ecx
movl (%ecx,%edx,1), %esp

Restore caller's register state.
popl %edi; popl %esi; popl %ebp; popl %ebx
ret

Stack
…

next
cur

&retlabelesp

Stack
…

next
cur

&retlabel
ebx
ebp
esi
ediesp

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

#define SWITCH_CUR 20
#define SWITCH_NEXT 24

cur->stack = esp

esp = next->stack

// switch_thread (struct thread *cur, struct thread *next)

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

10Pintos Context Switch (3)

All state is stored on outgoing thread’s stack, and restored from incoming thread’s stack
– Each thread has a 4KB page for its stack
– Called “kernel stack” because it’s only used when thread executes in kernel mode
– Mode switch automatically switches to kernel stack

switch_threads assumes that the thread that’s switched in was suspended in
switch_threads as well.

– Must fake that environment when switching to a thread for the first time.

Aside: none of the thread switching code uses privileged instructions:
– that’s what makes user-level threads (ULT) possible

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

11Pintos Kernel Stack

4 kB +---------------------------------+
| kernel stack |
| | |
| | |
| V |
| grows downward |
| ... |
| ... |
| switch_threads’s |
| stack frame <---+ |
+----------------------+----------+	
magic	
:	
stack---+	
name	
status	

0 kB +---------------------------------+

One page of memory captures a
process’s kernel stack + PCB

Don’t allocate large objects on the
stack:

void
kernel_function(void)
{

char buf[4096]; // DON’T
// KERNEL STACK OVERFLOW
// guaranteed

}

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

12Context Switching, Take 2

Process 1

Process 2

Kernel

user mode

kernel mode

intr_entry:
(saves entire CPU state)
(switches to kernel stack)

intr_entry:
(saves entire CPU state)
(switches to kernel stack) intr_exit:

(restore entire CPU state)
(switch back to user stack)

iret

intr_exit:
(restore entire CPU state)
(switch back to user stack)

iret

switch_threads: (in)
(saves caller’s state)

switch_threads: (in)
(saves caller’s state)

switch_threads: (out)
(restores caller’s state)

switch_threads: (out)
(restores caller’s state)(kernel stack switch) (kernel stack switch)

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

13External Interrupts & Context Switches

intr_entry:
/* Save caller's registers. */
pushl %ds; pushl %es; pushl %fs; pushl %gs; pushal

/* Set up kernel environment. */
cld
mov $SEL_KDSEG, %eax /* Initialize segment registers. */
mov %eax, %ds; mov %eax, %es
leal 56(%esp), %ebp /* Set up frame pointer. */

pushl %esp
call intr_handler /* Call interrupt handler. Context switch happens in there*/
addl $4, %esp
/* FALL THROUGH */

intr_exit: /* Separate entry for initial user program start */
/* Restore caller's registers. */
popal; popl %gs; popl %fs; popl %es; popl %ds
iret /* Return to current process, or to new process after context switch. */

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

14Context Switching: Summary

Context switch means to save the current and restore next process’s execution context

Context Switch != Mode Switch
– Although mode switch often precedes context switch

Asynchronous context switch happens in interrupt handler
– Usually last thing before leaving handler

Have ignored so far when to context switch & why → next

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

15Process States

Only 1 process (per CPU) can be in RUNNING state

RUNNINGRUNNING

READYREADYBLOCKEDBLOCKED

Process
must wait
for event

Event arrived

Scheduler
picks process

Process
preempted

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

16Process Events

What’s an event?
– External event:

disk controller completes sector transfer to memory
network controller signals that new packet has been received
clock has advanced to a predetermined time

– Events that arise from process interaction:
a resource that was previously held by some process is now available (e.g.,
lock_release)
an explicit signal is sent to a process (e.g., cond_signal)
a process has exited or was killed
a new process has been created

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

17Process Lists

All ready processes are inserted in a “ready list” data structure
– Running process typically not kept on ready list
– Can implement as multiple (real) ready lists, e.g., one for each priority class

All blocked processes are kept on lists
– List usually associated with event that caused blocking – usually one list per object that’s

causing events

Most of scheduling involves simple and clever ways of manipulating lists

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

18Priority Based Scheduling

Done in Linux, Windows, Pintos (after you complete Project 1), …

MIN

MAX

H
ig

he
r P

rio
rit

y

2

3

6

Only threads with the highest priority run
If more than one, round-robin

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Context Switches

Operating Systems

19Priority Based Scheduling (2)

Advantage:
– Dead simple: the highest-priority process runs
– Q.: what is the complexity of finding which process that is?

Disadvantage:
– Not fair: lower-priority processes will never run
– Hence, must adjust priorities somehow

All schedulers used in today’s general purpose OS work like this
– Only difference is how priorities are adjusted to provide fairness and avoid starvation

