¥ PCB vs TCB Context Switches 1

In 1:1 systems (Pintos), TCB==PCB
struct thread

add information there) rogress
struct thread
{

tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name. */
uint8_t *stack; [* Saved stack pointer. */
int priority; [* Priority. */
struct list_elem elem; /* List element. */
/* others you'll add as needed. */

e

In 1:n systems:

TCB contains execution state of thread + scheduling information + link to PCB
for process to which thread belongs

PCB contains identifier, plus information about resources shared by all threads

Operating Systems

M Steps in context switch: high-level Context Switches 2

Save the current process’s execution state to its PCB
Update current’s PCB as needed

Choose next process N

Update N’s PCB as needed

Restore N’s PCB execution state

Operating Systems

I Execution State

Saving/restoring execution state is highly tricky:

Must save state without destroying it

Registers

On x86: eax, ebx, ecx, ...

Stack

Context Switches 3

Special area in memory that holds activation records: e.g., the local (automatic) variables of

all function calls currently in progress

Saving the stack means retaining that area & saving a pointer to it (“stack pointer” = esp)

Operating Systems

M The Stack, seen from C/C++

Context Switches 4

int a;
static int b;
int ¢ = 5;
struct S
{
int t;
} s;

void func (int d)
{
static int e;
int f;
struct S w;

int *g = new int[10];

Q.: which of these variables are stored on the stack, and which are not?

A.: On stack: d, f, w (including w.t), g
Not on stack: a, b, ¢, s (including s.t), e, g[0]...9[9]

Operating Systems

H Switching Procedures Context Switches 5

Inside kernel, context switch is implemented in some procedure (function) called from C
code
Appears to caller as a procedure call

Must understand how to switch procedures (call/return)

Procedure calling conventions
Architecture-specific
Defined by ABI (application binary interface), implemented by compiler
Pintos uses SVR4 ABI

Operating Systems

M x86 Calling Conventions Context Switches 6

Caller saves caller-saved registers as needed

Caller pushes arguments, right-to-left on stack
via push assembly instruction

Caller executes CALL instruction: save address
of next instruction & jump to callee
Callee executes:

Saves callee-saved registers if they’ll
be destroyed

Puts return value (if any) in eax

Callee returns: pop return address from stack &
jump to it

Caller resumes: pop arguments off the stack
Caller restores caller-saved registers, if any

Operating Systems

| Example

Context Switches 7

callee:

pushl %ebp
movl %esp, %ebp
movl 12(%ebp), Y%eax

int globalvar; addl 8(%ebp), %eax
leave
int ret
callee(int a, int b)
{ caller:
return a + b; pushl %ebp
} movl %esp, %ebp
pushl globalvar
int pushl $5
caller(void) call callee
{ popl %edx
return callee(5, globalvar); popl %ecx
} leave
ret

Operating Systems

M Pintos Context Switch (1)

Context Switches 8

if (cur != next)
prev = switch_threads (cur, next);
retlabel: /* not in actual code */
schedule_tail (prev);
}

static void

schedule (void)

{ Stack
struct thread *cur = running_thread ();
struct thread *next = next_thread_to_run (); next
struct thread *prev = NULL; cur

uint32_t thread_stack ofs = offsetof (struct thread, stack);

esp | &retlabel

threads/thread.c, threads/switch.S

Operating Systems

) i Context Switches 9
Pintos Context Switch (2)

switch_threads: // switch_thread (struct thread *cur, struct thread *next)
Save caller's register state.
Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,
but requires us to preserve %ebx, %ebp, %esi, %edi.
pushl %ebx; pushl %ebp; pushl %esi; pushl %edi Stack
Get offsetof (struct thread, stack). n.e.;(t
mov thread_stack_ofs, %edx
cur
Save current stack pointer to old thread's stack. €SP | &retlabel
movl SWITCH_CUR(%esp), %eax R ebx
movl %esp, (%eax,%edx,1) cur->stack = esp ebp
esi
Restore stack pointer from new thread's stack. esp edi
movl SWITCH_NEXT(%esp), %ecx _
movl (%ecx,%edx,1), %esp esp = next->stack
e e 1. o Fdefine SWITCH_CUR 20
ret #define SWITCH_NEXT 24
Operating Systems
I Pintos Context Switch (3) Context Switches 10

All state is stored on outgoing thread’s stack, and restored from incoming thread’s stack
Each thread has a 4KB page for its stack
Called “kernel stack” because it’s only used when thread executes in kernel mode
Mode switch automatically switches to kernel stack

switch threads assumes that the thread that’s switched in was suspended in
switch threads as well

Must fake that environment when switching to a thread for the first time.

Aside: none of the thread switching code uses privileged instructions:
that’s what makes user-level threads (ULT) possible

Operating Systems

H Pintos Kernel Stack

One page of memory captures a

process’s kernel stack + PCB

Context Switches 11

R R e +
Don’t allocate large objects on the | kernel stack I
stack: | | |
| | |
| v |
| grows downward |
| |
| 500 |
| switch_ threads’s |
| stack frame <---+ |
B e e o +
void | magic | |
kernel function (void) I : I I
{ - | stack---+ |
char buf[4096]; // DON’'T | nane |
// KERNEL STACK OVERFLOW ' Seize '
// guaranteed N v
}

Operating Systems

I Context Switching, Take 2

intr_entry:
(saves entire CPU state)
(switches to kernel stack)

Context Switches 12

intr_exit:
(restore entire CPU state)

switch_threads: (in) [T
(saves caller’s state)

Process 1 3 : (switch back to user stack)
§ ! iret
Process 2 :] .
user mode
kernel mode
Kernel _:_ & - —
T

(kernel stack switch)

switch_threads: (out)
(restores caller’s state)

-
>l

Operating Systems

. External Interrupts & Context Switches Context Switches 13

intr_

intr_entry:

/* Save caller's registers. */
pushl %ds; pushl %es; pushl %fs; pushl %gs; pushal

/* Set up kernel environment. */

cld

mov $SEL_KDSEG, %eax [* Initialize segment registers. */
mov %eax, %ds; mov %eax, %es

leal 56(%esp), %ebp /* Set up frame pointer. */

pushl %esp

call intr_handler /* Call interrupt handler. Context switch happens in there*/
addl $4, %esp

/* FALL THROUGH */

exit: [* Separate entry for initial user program start */

/* Restore caller's registers. */

popal; popl %gs; popl %fs; popl %es; popl %ds

iret /* Return to current process, or to new process after context switch. */

Operating Systems

I Context Switching: Summary Context Switches 14

Context switch means to save the current and restore next process’s execution context

Context Switch != Mode Switch

Although mode switch often precedes context switch

Asynchronous context switch happens in interrupt handler

Usually last thing before leaving handler

Have ignored so far when to context switch & why — next

Operating Systems

. Process States Context Switches 15

Scheduler

picks process
Process

must wait

for event BreEEe

preempted

BLOCKED

Event arrived

Only 1 process (per CPU) can be in RUNNING state

Operating Systems

I Process Events Context Switches 16

What’s an event?
External event:
disk controller completes sector transfer to memory
network controller signals that new packet has been received
clock has advanced to a predetermined time
Events that arise from process interaction:

a resource that was previously held by some process is now available (e.g.,
lock_release)

an explicit signal is sent to a process (e.g., cond_signal)
a process has exited or was killed
a new process has been created

Operating Systems

I Process Lists

Context Switches 17

All ready processes are inserted in a “ready list” data structure
Running process typically not kept on ready list
Can implement as multiple (real) ready lists, e.g., one for each priority class

All blocked processes are kept on lists

List usually associated with event that caused blocking — usually one list per object that’s
causing events

Most of scheduling involves simple and clever ways of manipulating lists

Operating Systems

I Priority Based Scheduling Context Switches 18
MAX Only threads with the highest priority run
If more than one, round-robin
>]
IS 6 1 I I |
o
@
S
£l [8 77—
— 1 I] I
1] 1] 1
MIN

Done in Linux, Windows, Pintos (after you complete Project 1), ...

Operating Systems

H Priority Based Scheduling (2) Context Switches 19

Advantage:
Dead simple: the highest-priority process runs
Q.: what is the complexity of finding which process that is?

Disadvantage:
Not fair: lower-priority processes will never run
Hence, must adjust priorities somehow

All schedulers used in today’s general purpose OS work like this
Only difference is how priorities are adjusted to provide fairness and avoid starvation

Operating Systems

