
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

1Directories

Need to find file descriptor (inode), given a name

Approaches:
– Single directory (old PCs), Two-level approaches with 1 directory per user

Now exclusively hierarchical approaches:
– File system forms a tree (or DAG)

How to tell regular file from directory?
– Set a bit in the inode

Data Structures
– Linear list of (inode, name) pairs
– B-Trees that map name -> inode
– Combinations thereof

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

2Using Linear Lists

Advantage: (relatively) simple to implement

Disadvantage: scan makes lookup (& delete!) really slow for large directories

offset 0

23 multi-oom 15 sample.txt

inode #

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

3Using B-Trees

Advantages:
– Scalable to large number of files: in growth, in lookup time
– Naturally disk-oriented

Disadvantage:
– Complex (but readily available)
– Overhead for small directories

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

4Absolute Paths

How to resolve a path name such as “/usr/bin/ls”?
– Split into tokens using “/” separator
– Find inode corresponding to root directory

(how? Use fixed inode # for root)
– (*) Look up “usr” in root directory, find inode
– If not last component in path, check that inode is a directory. Go to (*), looking

for next comp
– If last component in path, check inode is of desired type, return

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

5Name Resolution

Must have a way to scan an entire directory without other processes interfering -
> need a “lock” function

– But don’t need to hold lock on /usr when scanning /usr/bin

Directories can only be removed if they’re empty
– Requires synchronization also

Most OS cache translations in “namei” cache – maps absolute pathnames to
inode

– Must keep namei cache consistent if files are deleted

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

6Current Directory

Relative pathnames are resolved relative to current directory
– Provides default context
– Every process has one in Unix/Pintos

chdir(2) changes current directory
– cd tmp; ls; pwd vs (cd tmp; ls); pwd

lookup algorithm the same, except starts from current dir
– process should keep current directory open
– current directory inherited from parent

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

7Hard & Soft Links

Provides aliases (different names) for a file

Hard links: (Unix: ln)
– Two independent directory entries have the same inode number, refer to same file
– Inode contains a reference count
– Disadvantage: alias only possible with same filesystem

Soft links: (Unix: ln –s)
– Special type of file (noted in inode); content of file is absolute or relative

pathname – stored inside inode instead of direct block list

Windows: “junctions” & “shortcuts”

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

8File Systems & Fault Tolerance

Failure Model
– Define acceptable failures (disk head hits dust particle, scratches disk – you will

lose some data)
– Define which failure outcomes are unacceptable

Define recovery procedure to deal with unacceptable failures:
– Recovery moves from an incorrect state A to correct state B
– Must understand possible incorrect states A after crash!
– A is like “snapshot of the past”
– Anticipating all states A is difficult

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

9Methods to Recover from Failure

On failure, retry entire computation
– Not a good model for persistent file systems

Use atomic changes
– Problem: how to construct larger atomic changes from the small atomic units

available (i.e., single sector writes)

Use reconstruction
– Ensure that changes are so ordered that if crash occurs after every step, a recovery

program can either undo change or complete it
– proactive to avoid unacceptable failures
– reactive to fix up state after acceptable failures

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

10Sensible Invariants

In a Unix-style file system, want that:
– File & directory names are unique within parent directory
– Free list/map accounts for all free objects

all objects on free list are really free
– All data blocks belong to exactly one file (only one pointer to them)
– Inode’s ref count reflects exact number of directory entries pointing to it
– Don’t show old data to applications

Q.: How do we deal with possible violations of these invariants after a crash?

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

11Crash Recovery (fsck)

After crash, fsck runs and performs the equivalent of mark-and-sweep garbage
collection

Follow, from root directory, directory entries
– Count how many entries point to inode, adjust ref count

Recover unreferenced inodes:
– Scan inode array and check that all inodes marked as used are referenced by dir

entry
– Move others to /lost+found

Recompute free list:
– Follow direct blocks+single+double+triple indirect blocks, mark all blocks so

reached as used – free list/map is the complement

In following discussion, keep in mind what fsck could and could not fix!

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

12Example 1: file create

On create(“foo”), have to
1. Scan current working dir for entry “foo” (fail if found); else find empty slot in

directory for new entry
2. Allocate an inode #in
3. Insert pointer to #in in directory: (#in, “foo”)
4. Write a) inode & b) directory back

What happens if crash after 1, 2, 3, or 4a), 4b)?

Does order of inode vs directory write back matter?

Rule: never write persistent pointer to object that’s not (yet) persistent

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

13Example 2: file unlink

To unlink(“foo”), must
1. Find entry “foo” in directory
2. Remove entry “foo” in directory
3. Find inode #in corresponding to it, decrement #ref count
4. If #ref count == 0, free all blocks of file
5. Write back inode & directory

Q.: what’s the correct order in which to write back inode & directory?

Q.: what can happen if free blocks are reused before inode’s written back?

Rule: first persistently nullify pointer to any object before freeing it (object=freed
blocks & inode)

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

14Example 3: file rename

To rename(“foo”, “bar”), must
1. Find entry (#in, “foo”) in directory
2. Check that “bar” doesn’t already exist
3. Remove entry (#in, “foo”)
4. Add entry (#in, “bar”)

This does not work, because?

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

15Example 3a: file rename

To rename(“foo”, “bar”), conservatively
1. Find entry (#i, “foo”) in directory
2. Check that “bar” doesn’t already exist
3. Increment ref count of #i
4. Add entry (#i, “bar”) to directory
5. Remove entry (#i, “foo”) from directory
6. Decrement ref count of #i

Worst case: have old & new names to refer to file

Rule: never nullify pointer before setting a new pointer

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

16Example 4: file growth

Suppose file_write() is called.
– First, find block at offset

Case 1: metadata already exists for block (file is not grown)
– Simply write data block

Case 2: must allocate block, must update metadata (direct block pointer, or
indirect block pointer)

– Must write changed metadata (inode or index block) & data

Both writeback orders can lead to acceptable failures:
– File data first, metadata next – may lose some data on crash
– Metadata first, file data next – may see previous user’s deleted data after crash

(very expensive to avoid – would require writing all data synchronously)

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

17FFS’s Consistency

Berkeley FFS (Fast File System) formalized rules for file system consistency

FFS acceptable failures:
– May lose some data on crash
– May see someone else’s previously deleted data

Applications must zero data out if they wish to avoid this + fsync
– May have to spend time to reconstruct free list
– May find unattached inodes → lost+found

Unacceptable failures:
– After crash, get active access to someone else’s data

Either by pointing at reused inode or reused blocks

FFS uses 2 synchronous writes on each metadata operation that creates/destroy
inodes or directory entries, e.g., creat(), unlink(), mkdir(), rmdir()

– Updates proceed at disk speed rather than CPU/memory speed

