I Directories File Systems 1

Need to find file descriptor (inode), given a name

Approaches:
Single directory (old PCs), Two-level approaches with 1 directory per user

Now exclusively hierarchical approaches:
File system forms a tree (or DAG)

How to tell regular file from directory?
Set a bit in the inode

Data Structures
Linear list of (inode, name) pairs
B-Trees that map name -> inode
Combinations thereof

Operating Systems

H Using Linear Lists File Systems 2
inode #
N T
23 | multi-oom 15 | sample.txt
offset 0

Advantage: (relatively) simple to implement

Disadvantage: scan makes lookup (& delete!) really slow for large directories

Operating Systems

B Using B-Trees File Systems 3

Advantages:
Scalable to large number of files: in growth, in lookup time
Naturally disk-oriented

Disadvantage:
Complex (but readily available)
Overhead for small directories

Operating Systems

M Absolute Paths File Systems 4

How to resolve a path name such as “/usr/bin/ls”?
Split into tokens using ““/”” separator
Find inode corresponding to root directory
(how? Use fixed inode # for root)
(*) Look up “usr” in root directory, find inode

If not last component in path, check that inode is a directory. Go to (*), looking
for next comp

If last component in path, check inode is of desired type, return

Operating Systems

I Name Resolution File Systems 5

Must have a way to scan an entire directory without other processes interfering -
> need a “lock” function

But don’t need to hold lock on /usr when scanning /usr/bin

Directories can only be removed if they’re empty
Requires synchronization also

Most OS cache translations in “namei” cache — maps absolute pathnames to
inode
Must keep namei cache consistent if files are deleted

Operating Systems

M Current Directory File Systems 6

Relative pathnames are resolved relative to current directory
Provides default context
Every process has one in Unix/Pintos

chdir(2) changes current directory
cd tmp; Is; pwd vs (cd tmp; Is); pwd

lookup algorithm the same, except starts from current dir
process should keep current directory open
current directory inherited from parent

Operating Systems

M Hard & Soft Links File Systems 7

Provides aliases (different names) for a file

Hard links: (Unix: In)
Two independent directory entries have the same inode number, refer to same file
Inode contains a reference count
Disadvantage: alias only possible with same filesystem

Soft links: (Unix: In —s)
Special type of file (noted in inode); content of file is absolute or relative
pathname — stored inside inode instead of direct block list

Windows: “junctions” & ““shortcuts”

Operating Systems

I File Systems & Fault Tolerance File Systems 8

Failure Model

Define acceptable failures (disk head hits dust particle, scratches disk — you will
lose some data)

Define which failure outcomes are unacceptable

Define recovery procedure to deal with unacceptable failures:
Recovery moves from an incorrect state A to correct state B
Must understand possible incorrect states A after crash!
A is like “snapshot of the past”
Anticipating all states A is difficult

Operating Systems

M Methods to Recover from Failure File Systems 9

On failure, retry entire computation
Not a good model for persistent file systems

Use atomic changes

Problem: how to construct larger atomic changes from the small atomic units
available (i.e., single sector writes)

Use reconstruction

Ensure that changes are so ordered that if crash occurs after every step, a recovery
program can either undo change or complete it

proactive to avoid unacceptable failures
reactive to fix up state after acceptable failures

Operating Systems

M Sensible Invariants File Systems 10

In a Unix-style file system, want that:
File & directory names are unique within parent directory
Free list/map accounts for all free objects
all objects on free list are really free
All data blocks belong to exactly one file (only one pointer to them)
Inode’s ref count reflects exact number of directory entries pointing to it
Don’t show old data to applications

Q.: How do we deal with possible violations of these invariants after a crash?

Operating Systems

W Crash Recovery (fsck) File Systems 11

After crash, fsck runs and performs the equivalent of mark-and-sweep garbage
collection

Follow, from root directory, directory entries
Count how many entries point to inode, adjust ref count

Recover unreferenced inodes:
Scan inode array and check that all inodes marked as used are referenced by dir
entry
Move others to /lost+found

Recompute free list:
Follow direct blocks+single+double+triple indirect blocks, mark all blocks so
reached as used — free list/map is the complement

In following discussion, keep in mind what fsck could and could not fix!

Operating Systems

I Example 1: file create File Systems 12
On create(“f00”), have to

Scan current working dir for entry “foo” (fail if found); else find empty slot in
directory for new entry

Allocate an inode #in
Insert pointer to #in in directory: (#in, “f00’)
Write a) inode & b) directory back

What happens if crash after 1, 2, 3, or 4a), 4b)?

Does order of inode vs directory write back matter?

Rule: never write persistent pointer to object that’s not (yet) persistent

Operating Systems

B Example 2: file unlink File Systems 13

To unlink(“foo”), must
Find entry “foo” in directory
Remove entry “foo” in directory
Find inode #in corresponding to it, decrement #ref count
If #ref count == 0, free all blocks of file
Write back inode & directory

Q.: what’s the correct order in which to write back inode & directory?
Q.: what can happen if free blocks are reused before inode’s written back?

Rule: first persistently nullify pointer to any object before freeing it (object=freed
blocks & inode)

Operating Systems

I Example 3: file rename File Systems 14

To rename(“foo”, “bar’’), must
Find entry (#in, “foo”) in directory
Check that “bar” doesn’t already exist
Remove entry (#in, “foo”)
Add entry (#in, “bar”)

This does not work, because?

Operating Systems

B Example 3a: file rename File Systems 15

To rename(“foo”, “bar”), conservatively
Find entry (#i, “f00”) in directory
Check that “bar” doesn’t already exist
Increment ref count of #i
Add entry (#i, “bar”) to directory
Remove entry (#i, “f00”) from directory
Decrement ref count of #i

Worst case: have old & new names to refer to file

Rule: never nullify pointer before setting a new pointer

Operating Systems

I Example 4: file growth File Systems 16

Suppose file_write() is called.
First, find block at offset

Case 1: metadata already exists for block (file is not grown)
Simply write data block

Case 2: must allocate block, must update metadata (direct block pointer, or
indirect block pointer)
Must write changed metadata (inode or index block) & data

Both writeback orders can lead to acceptable failures:
File data first, metadata next — may lose some data on crash

Metadata first, file data next — may see previous user’s deleted data after crash
(very expensive to avoid — would require writing all data synchronously)

Operating Systems

M FFS’s Consistency File Systems 17

Berkeley FFS (Fast File System) formalized rules for file system consistency

FFS acceptable failures:
May lose some data on crash
May see someone else’s previously deleted data
Applications must zero data out if they wish to avoid this + fsync
May have to spend time to reconstruct free list
May find unattached inodes — lost+found

Unacceptable failures:
After crash, get active access to someone else’s data
Either by pointing at reused inode or reused blocks

FFS uses 2 synchronous writes on each metadata operation that creates/destroy
inodes or directory entries, e.g., creat(), unlink(), mkdir(), rmdir()

Updates proceed at disk speed rather than CPU/memory speed

Operating Systems

