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1Blocksize Trade-Offs

Assume all files are 2KB in size (observed median filesz is about 2KB)
– Larger blocks: faster reads (because seeks are amortized & more bytes per transfer)
– More wastage (2KB file in 32KB block means 15/16th are unused)

Source: Tanenbaum, Modern Operating Systems
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2Indexed Allocation

Single-index: specify maximum filesize, create index array, then note blocks in 
index

– Random access ok – one translation step
– Sequential access requires more seeks – depending on contiguous allocation

Drawback: hard to grow beyond maximum
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3Multi-Level Indices

Used in Unix & Pintos (P4)
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4Multi-Level Indices

If filesz < N * BLKSIZE, can store all information in direct block array
– Biased in favor of small files (ok because most files are small…)

Assume index block stores I entries
– If filesz < (I + N) * BLKSIZE, 1 indirect block suffices

Q.: What’s the maximum size before we need triple-indirect block?

Q.: What’s the per-file overhead (best case, worst case?)
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7Storing Inodes

Unix v7, BSD 4.3

I0 I1 I2 I3 I4 …..Superblock Rest of disk for files & directories

I0 I1 …SB1 Files … I3 I4 ….. Files … I8 I9 ….. Files …SB2 SB3

CGi

FFS (BSD 4.4)

Cylinder groups have superblock+bitmap+inode list+file space

Try to allocate file & inode in same cylinder group to improve access locality

Computer Science Dept Va Tech August 2007 ©2007  Back

File Systems

Operating Systems

8Positioning Inodes

Putting inodes in fixed place makes finding inodes easier
– Can refer to them simply by inode number
– After crash, there is no ambiguity as to what are inodes vs. what are regular files

Disadvantage: limits the number of files per filesystem at creation time
– Use “df –ih” on Linux to see how many inodes are used/free
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9Directories

Need to find file descriptor (inode), given a name 

Approaches:
– Single directory (old PCs), Two-level approaches with 1 directory per user

Now exclusively hierarchical approaches:
– File system forms a tree (or DAG)

How to tell regular file from directory?
– Set a bit in the inode

Data Structures
– Linear list of (inode, name) pairs
– B-Trees that map name -> inode
– Combinations thereof
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10Using Linear Lists

Advantage: (relatively) simple to implement

Disadvantages:
– Scan makes lookup (& delete!) really slow for large directories
– Could cause fragmentation (though not a problem in practice)

offset 0

23 multi-oom 15 sample.txt

inode #
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11Using B-Trees

Advantages: 
– Scalable to large number of files: in growth, in lookup time

Disadvantage:
– Complex
– Overhead for small directories
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12Absolute Paths

How to resolve a path name such as “/usr/bin/ls”?
– Split into tokens using “/” separator
– Find inode corresponding to root directory

(how? Use fixed inode # for root)
– (*) Look up “usr” in root directory, find inode
– If not last component in path, check that inode is a directory. Go to (*), looking 

for next comp
– If last component in path, check inode is of desired type, return
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13Name Resolution

Must have a way to scan an entire directory without other processes interfering -
> need a “lock” function

– But don’t need to hold lock on /usr when scanning /usr/bin

Directories can only be removed if they’re empty
– Requires synchronization also

Most OS cache translations in “namei” cache – maps absolute pathnames to 
inode

– Must keep namei cache consistent if files are deleted
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14Current Directory

Relative pathnames are resolved relative to current directory
– Provides default context
– Every process has one in Unix/Pintos

chdir(2) changes current directory
– cd tmp; ls; pwd vs (cd tmp; ls); pwd

lookup algorithm the same, except starts from current dir
– process should keep current directory open
– current directory inherited from parent
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15Hard & Soft Links

Provides aliases (different names) for a file

Hard links: (Unix: ln)
– Two independent directory entries have the same inode number, refer to same file
– Inode contains a reference count
– Disadvantage: alias only possible with same filesystem

Soft links: (Unix: ln –s)
– Special type of file (noted in inode); content of file is absolute or relative 

pathname – stored inside inode instead of direct block list

Windows: “junctions” & “shortcuts”


