
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

1Blocksize Trade-Offs

Assume all files are 2KB in size (observed median filesz is about 2KB)
– Larger blocks: faster reads (because seeks are amortized & more bytes per transfer)
– More wastage (2KB file in 32KB block means 15/16th are unused)

Source: Tanenbaum, Modern Operating Systems

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

2Indexed Allocation

Single-index: specify maximum filesize, create index array, then note blocks in
index

– Random access ok – one translation step
– Sequential access requires more seeks – depending on contiguous allocation

Drawback: hard to grow beyond maximum

File A
Part 1

File A
Part 2

File A
Index

File A
Part 3

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

3Multi-Level Indices

Used in Unix & Pintos (P4)

1
2
3
..
N

FLI
SLI
TLI

1

2

index

N

index2

index

index

N+IN+1

N+I+1

index3 index2

Direct
Blocks

Indirect
Block

Double
Indirect
Block

Triple
Indirect
Block index

N+I+I2

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

4Multi-Level Indices

If filesz < N * BLKSIZE, can store all information in direct block array
– Biased in favor of small files (ok because most files are small…)

Assume index block stores I entries
– If filesz < (I + N) * BLKSIZE, 1 indirect block suffices

Q.: What’s the maximum size before we need triple-indirect block?

Q.: What’s the per-file overhead (best case, worst case?)

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

5

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

View

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

6

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

…
5
12

4
3
2
1

…
10
11

9
8
7
6

…
-1
-1

34
27
20
13

…
18
19

17
16
15
14

Details

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

7Storing Inodes

Unix v7, BSD 4.3

I0 I1 I2 I3 I4 …..Superblock Rest of disk for files & directories

I0 I1 …SB1 Files … I3 I4 ….. Files … I8 I9 ….. Files …SB2 SB3

CGi

FFS (BSD 4.4)

Cylinder groups have superblock+bitmap+inode list+file space

Try to allocate file & inode in same cylinder group to improve access locality

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

8Positioning Inodes

Putting inodes in fixed place makes finding inodes easier
– Can refer to them simply by inode number
– After crash, there is no ambiguity as to what are inodes vs. what are regular files

Disadvantage: limits the number of files per filesystem at creation time
– Use “df –ih” on Linux to see how many inodes are used/free

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

9Directories

Need to find file descriptor (inode), given a name

Approaches:
– Single directory (old PCs), Two-level approaches with 1 directory per user

Now exclusively hierarchical approaches:
– File system forms a tree (or DAG)

How to tell regular file from directory?
– Set a bit in the inode

Data Structures
– Linear list of (inode, name) pairs
– B-Trees that map name -> inode
– Combinations thereof

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

10Using Linear Lists

Advantage: (relatively) simple to implement

Disadvantages:
– Scan makes lookup (& delete!) really slow for large directories
– Could cause fragmentation (though not a problem in practice)

offset 0

23 multi-oom 15 sample.txt

inode #

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

11Using B-Trees

Advantages:
– Scalable to large number of files: in growth, in lookup time

Disadvantage:
– Complex
– Overhead for small directories

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

12Absolute Paths

How to resolve a path name such as “/usr/bin/ls”?
– Split into tokens using “/” separator
– Find inode corresponding to root directory

(how? Use fixed inode # for root)
– (*) Look up “usr” in root directory, find inode
– If not last component in path, check that inode is a directory. Go to (*), looking

for next comp
– If last component in path, check inode is of desired type, return

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

13Name Resolution

Must have a way to scan an entire directory without other processes interfering -
> need a “lock” function

– But don’t need to hold lock on /usr when scanning /usr/bin

Directories can only be removed if they’re empty
– Requires synchronization also

Most OS cache translations in “namei” cache – maps absolute pathnames to
inode

– Must keep namei cache consistent if files are deleted

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

14Current Directory

Relative pathnames are resolved relative to current directory
– Provides default context
– Every process has one in Unix/Pintos

chdir(2) changes current directory
– cd tmp; ls; pwd vs (cd tmp; ls); pwd

lookup algorithm the same, except starts from current dir
– process should keep current directory open
– current directory inherited from parent

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

15Hard & Soft Links

Provides aliases (different names) for a file

Hard links: (Unix: ln)
– Two independent directory entries have the same inode number, refer to same file
– Inode contains a reference count
– Disadvantage: alias only possible with same filesystem

Soft links: (Unix: ln –s)
– Special type of file (noted in inode); content of file is absolute or relative

pathname – stored inside inode instead of direct block list

Windows: “junctions” & “shortcuts”

