
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

1Files vs Disks

File Abstraction
Byte oriented
Names
Access protection
Consistency guarantees

Disk Abstraction
Block oriented
Block #s
No protection
No guarantees beyond block write

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

2Filesystem Requirements

Naming
– Should be flexible, e.g., allow multiple names for same files
– Support hierarchy for easy of use

Persistence
– Want to be sure data has been written to disk in case crash occurs

Sharing/Protection
– Want to restrict who has access to files
– Want to share files with other users

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

3FS Requirements (cont’d)

Speed & Efficiency for different access patterns
– Sequential access
– Random access
– Sequential is most common & Random next
– Other pattern is Keyed access (not usually provided by OS)

Minimum Space Overhead
– Disk space needed to store metadata is lost for user data

Twist: all metadata that is required to do translation must be stored on disk
– Translation scheme should minimize number of additional accesses for a given access

pattern
– Harder than, say page tables where we assumed page tables themselves are not subject to

paging!

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

4Overview

File Operations:
create(), unlink(), open(),

read(), write(), close()

Buffer Cache

Device Driver

File System

• Uses names for files
• Views files as
sequence of bytes

Uses disk id + sector
indices

Must implement translation
(file name, file offset) →
(disk id, disk sector, sector offset)

Must manage free space on disk

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

5The Big Picture

PCBPCB

…
5
4
3
2
1
0

…
5
4
3
2
1
0

Data structures to keep
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Data structures to keep
track of open files

struct file
inode + position + …

struct dir
inode + position

struct inode

Per-process
file descriptor
table

B
uffer C

ache
B

uffer C
ache

Open file table
Filesystem
Information

File Descriptors
(inodes)

Directory
Data

File Data

Cached data and
metadata in buffer
cache

On-Disk
Data Structures

?

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

6Steps in Opening & Reading a File

Lookup (via directory)
– find on-disk file descriptor’s block number

Find entry in open file table (struct inode list in Pintos)
– Create one if none, else increment ref count

Find where file data is located
– By reading on-disk file descriptor

Read data & return to user

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

7Open File Table

inode – represents file
– at most 1 in-memory instance per unique file
– #number of openers & other properties

file – represents one or more processes using an file
– With separate offsets for byte-stream

dir – represents an open directory file

Generally:
– None of data in OFT is persistent
– Reflects how processes are currently using files
– Lifetime of objects determined by open/close

Reference counting is used

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

8File Descriptors (“inodes”)

Term “inode” can refer to 3 things:
1. in-memory inode

– Store information about an open file, such as how many openers, corresponds to on-
disk file descriptor

2. on-disk inode
– Region on disk, entry in file descriptor table, that stores persistent information about

a file – who owns it, where to find its data blocks, etc.
3. on-disk inode, when cached in buffer cache

– A bytewise copy of 2. in memory

Q.: Should in-memory inode store a pointer to cached on-disk inode? (Answer:
No.)

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

9Filesystem Information

Contains “superblock”
stores information such as
size of entire filesystem, etc.

– Location of file descriptor table & free map

Free Block Map
– Bitmap used to find free blocks
– Typically cached in memory

Superblock & free map often replicated in different positions on disk

Free Block Map
0100011110101010101

Super Block

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

10File Allocation Strategies

Contiguous allocation

Linked files

Indexed files

Multi-level indexed files

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

11Contiguous Allocation

Idea: allocate files in contiguous blocks

File Descriptor = (first block, length)

Good sequential & random access

Problems:
– hard to extend files – may require expensive compaction
– external fragmentation
– analogous to segmentation-based VM

Pintos’s baseline implementation does this

File A File B

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

12Linked Files

Idea: implement linked list
– either with variable sized blocks
– or fixed sized blocks (“clusters”)

Solves fragmentation problem, but now
– need lots of seeks for sequential accesses and random accesses
– unreliable: lose first block, may lose file

Solution: keep linked list in memory
– DOS: FAT File Allocation Table

File A
Part 1

File B
Part 1

File A
Part 2

File B
Part 2

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

13DOS FAT
FAT stored at beginning of disk & replicated for

redundancy

FAT cached in memory

Size: n-bit entries, m-bit blocks → 2^(m+n) limit
– n=12, 16, 28
– m=9 … 15 (0.5KB-32KB)

As disk size grows, m & n must grow
– Growth of n means larger in-memory table

1012

-111

910

-19

08

117

-16

75

-14

53

02

61

1

3

4

2

Length First BlockFilename

4

12

3

1

“d”

“c”

“b”

“a”

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

14Blocksize Trade-Offs

Assume all files are 2KB in size (observed median filesz is about 2KB)
– Larger blocks: faster reads (because seeks are amortized & more bytes per transfer)
– More wastage (2KB file in 32KB block means 15/16th are unused)

Source: Tanenbaum, Modern Operating Systems

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

15Indexed Allocation

Single-index: specify maximum filesize, create index array, then note blocks in
index

– Random access ok – one translation step
– Sequential access requires more seeks – depending on contiguous allocation

Drawback: hard to grow beyond maximum

File A
Part 1

File A
Part 2

File A
Index

File A
Part 3

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

16Multi-Level Indices

Used in Unix & Pintos (P4)

1
2
3
..
N

FLI
SLI
TLI

1

2

index

N

index2

index

index

N+IN+1

N+I+1

index3 index2

Direct
Blocks

Indirect
Block

Double
Indirect
Block

Triple
Indirect
Block index

N+I+I2

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

17Multi-Level Indices

If filesz < N * BLKSIZE, can store all information in direct block array
– Biased in favor of small files (ok because most files are small…)

Assume index block stores I entries
– If filesz < (I + N) * BLKSIZE, 1 indirect block suffices

Q.: What’s the maximum size before we need triple-indirect block?

Q.: What’s the per-file overhead (best case, worst case?)

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

18

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

View

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech August 2007 ©2007 Back

File Systems

Operating Systems

19

34350 1 2 3 4 5 6 7 121314 2021 2728

Logical View (Per File) offset in file

Physical View (On Disk) (ignoring other files)

Inode

Data

Index

Index2

sector numbers on disk

…
5
12

4
3
2
1

…
10
11

9
8
7
6

…
-1
-1

34
27
20
13

…
18
19

17
16
15
14

Details

