
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

1What Disks Look Like

Hitachi Deskstar T7K500 SATA

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

2Disk Schematics

Source: Micro House PC
Hardware Library Volume I:
Hard Drives

See narrated flash animation at
http://cis.poly.edu/cs2214rvs/disk.swf

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

3Tracks, Sectors, Cylinders

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

4Typical Disk Parameters

2-30 heads (2 per platter)
– Modern disks: no more than 4 platters

Diameter: 2.5” – 14”

Capacity: 20MB-500GB

Sector size: 64 bytes to 8K bytes
– Most PC disks: 512 byte sectors

700-20480 tracks per surface

16-1600 sectors per track

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

5The OS perspective

Disks are big & slow - compared to RAM

Access to disk requires
– Seek (move arm to track) – to cross all tracks anywhere from 20-50ms, on

average takes 1/3.
– Rotational delay (wait for sector to appear under track) 7,200rpm is 8.3ms per

rotation, on average takes ½: 4.15ms rot delay
– Transfer time (fast: 512 bytes at 998 Mbit/s is about 3.91us)

Seek+Rot Delay dominates

Random Access is expensive
– and unlikely to get better

Consequence:
– avoid seeks
– seek to short distances
– amortize seeks by doing bulk transfers

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

6Disk Scheduling

Can use priority scheme

Can reduce avg access time by sending requests to disk controller in certain order
– Or, more commonly, have disk itself reorder requests

SSTF: shortest seek time first
– Like SJF in CPU scheduling, guarantees minimum avg seek time, but can lead to

starvation

SCAN: “elevator algorithm”
– Process requests with increasing track numbers until highest reached, then

decreasing etc. – repeat

Variations:
– LOOK – don’t go all the way to the top without passengers
– C-SCAN: - only take passengers when going up

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

7Accessing Disks

Sector is the unit of atomic access

Writes to sectors should always complete, even if power fails

Consequence of sector granularity:
– Writing a single byte requires read-modify-write

void set_byte(off_t off, char b) {
char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

void set_byte(off_t off, char b) {
char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

8Disk Caching – Buffer Cache

How much memory should be dedicated for it?
– In older systems (& Pintos), set aside a portion of physical memory
– In newer systems, integrated into virtual memory system: e.g., page cache in

Linux

How should eviction be handled?

How should prefetching be done?

How should concurrent access be mediated (multiple processes may be
attempting to write/read to same sector)?

– How is consistency guaranteed? (All accesses must go through buffer cache!)

What write-back strategy should be used?

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

9Buffer Cache in Pintos

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes
64

desc

desc

desc

desc

desc

desc

desc

Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write requests
- lock to protect above variables
- signaling variables to signal
availability changes
- usage information for eviction policy
- data (pointer or embedded)

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

10A Buffer Cache Interface

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

11Buffer Cache Rationale

Do not combine allocating a buffer (a resource management decision) with
loading the data into the buffer from file (which is not always necessary)

Provide a way for buffer user to say they’re done with the buffer
Provide a way to share buffer between multiple users
More efficient interface (opaque type instead of block idx saves lookup, constant

size buffers)

class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

Compare to buffer
pool assignment in
CS2604

Differences:

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

12Buffer Cache Sizing

Simple approach
– Set aside part of physical memory for buffer cache/use rest for virtual memory

pages as page cache – evict buffer/page from same pool

Disadvantage: can’t use idle memory of other pool - usually use unified cache
subject to shared eviction policy

Windows allows user to limit buffer cache size

Problem:
– Bad prediction of buffer caches accesses can result in poor VM performance (and

vice versa)

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

13Buffer Cache Replacement

Similar to VM Page Replacement, differences:
– Can do exact LRU (because user must call cache_get_block()!)
– But LRU hurts when long sequential accesses – should use MRU (most recently

used) instead.

Example reference string: ABCDABCDABCD, can cache 3:
– LRU causes 12 misses, 0 hits, 9 evictions
– How many misses/hits/evictions with MRU?

Also: not all blocks are equally important, benefit from some hits more than from
others

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

14Buffer Cache Writeback Strategies

Write-Through:
– Good for floppy drive, USB stick
– Poor performance – every write causes disk access

(Delayed) Write-Back:
– Makes individual writes faster – just copy & set bit
– Absorbs multiple writes
– Allows write-back in batches

Problem: what if system crashes before you’ve written data back?
– Trade-off: performance in no-fault case vs. damage control in fault case
– If crash occurs, order of write-back can matter

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

15Writeback Strategies (2)

Must write-back on eviction (naturally)

Periodically (every 30 seconds or so)

When user demands:
– fsync(2) writes back all modified data belonging to one file – database

implementations use this
– sync(1) writes back entire cache

Some systems guarantee write-back on file close

Computer Science Dept Va Tech August 2007 ©2007 Back

Disk Systems

Operating Systems

16Buffer Cache Prefetching

Would like to bring next block to be
accessed into cache before it’s accessed

– Exploit “Spatial locality”
Must be done in parallel

– use daemon thread and
producer/consumer pattern

Note: next(n) not always equal to n+1
– although we try for it – via clustering to

minimize seek times
Don’t initiate read_ahead if next(n) is

unknown or would require another disk
access to find out

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
signal qcond;
q.unlock();

}
cache_readahead_daemon() {

while (true) {
q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
signal qcond;
q.unlock();

}
cache_readahead_daemon() {

while (true) {
q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}

