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1What Disks Look Like

Hitachi Deskstar T7K500 SATA
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2Disk Schematics

Source: Micro House PC 
Hardware Library Volume I: 
Hard Drives

See narrated flash animation at 
http://cis.poly.edu/cs2214rvs/disk.swf
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3Tracks, Sectors, Cylinders
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4Typical Disk Parameters

2-30 heads (2 per platter)
– Modern disks: no more than 4 platters

Diameter: 2.5” – 14”

Capacity: 20MB-500GB

Sector size: 64 bytes to 8K bytes
– Most PC disks: 512 byte sectors

700-20480 tracks per surface

16-1600 sectors per track
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5The OS perspective

Disks are big & slow - compared to RAM

Access to disk requires
– Seek (move arm to track) – to cross all tracks anywhere from 20-50ms, on 

average takes 1/3.
– Rotational delay (wait for sector to appear under track) 7,200rpm is 8.3ms per 

rotation, on average takes ½: 4.15ms rot delay
– Transfer time (fast: 512 bytes at 998 Mbit/s is about 3.91us)

Seek+Rot Delay dominates

Random Access is expensive
– and unlikely to get better

Consequence:
– avoid seeks
– seek to short distances
– amortize seeks by doing bulk transfers
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6Disk Scheduling

Can use priority scheme

Can reduce avg access time by sending requests to disk controller in certain order
– Or, more commonly, have disk itself reorder requests

SSTF: shortest seek time first
– Like SJF in CPU scheduling, guarantees minimum avg seek time, but can lead to 

starvation

SCAN: “elevator algorithm”
– Process requests with increasing track numbers until highest reached, then 

decreasing etc. – repeat

Variations: 
– LOOK – don’t go all the way to the top without passengers
– C-SCAN: - only take passengers when going up
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7Accessing Disks

Sector is the unit of atomic access

Writes to sectors should always complete, even if power fails

Consequence of sector granularity:
– Writing a single byte requires read-modify-write

void set_byte(off_t off, char b) {
char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}

void set_byte(off_t off, char b) {
char buffer[512];
disk_read(disk, off/DISK_SECTOR_SIZE, buffer);
buffer[off % DISK_SECTOR_SIZE] = b;
disk_write(disk, off/DISK_SECTOR_SIZE, buffer);

}
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8Disk Caching – Buffer Cache

How much memory should be dedicated for it?
– In older systems (& Pintos), set aside a portion of physical memory 
– In newer systems, integrated into virtual memory system: e.g., page cache in 

Linux

How should eviction be handled?

How should prefetching be done?

How should concurrent access be mediated (multiple processes may be 
attempting to write/read to same sector)?

– How is consistency guaranteed? (All accesses must go through buffer cache!)

What write-back strategy should be used?
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9Buffer Cache in Pintos

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes

512 bytes
64

desc

desc

desc

desc

desc

desc

desc

Cache Block Descriptor
- disk_sector_id, if in use
- dirty bit
- valid bit
- # of readers
- # of writers
- # of pending read/write requests
- lock to protect above variables
- signaling variables to signal 
availability changes
- usage information for eviction policy
- data (pointer or embedded)
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10A Buffer Cache Interface

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown

// cache.h
struct cache_block; // opaque type
// reserve a block in buffer cache dedicated to hold this sector
// possibly evicting some other unused buffer
// either grant exclusive or shared access
struct cache_block * cache_get_block (disk_sector_t sector, bool exclusive);
// release access to cache block
void cache_put_block(struct cache_block *b);
// read cache block from disk, returns pointer to data
void *cache_read_block(struct cache_block *b);
// fill cache block with zeros, returns pointer to data
void *cache_zero_block(struct cache_block *b);
// mark cache block dirty (must be written back)
void cache_mark_block_dirty(struct cache_block *b);
// not shown: initialization, readahead, shutdown
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11Buffer Cache Rationale

Do not combine allocating a buffer (a resource management decision) with 
loading the data into the buffer from file (which is not always necessary)

Provide a way for buffer user to say they’re done with the buffer
Provide a way to share buffer between multiple users
More efficient interface (opaque type instead of block idx saves lookup, constant 

size buffers)

class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

class BufferPool { // (2) Buffer Passing
public:
virtual void* getblock(int block) = 0;
virtual void dirtyblock(int block) = 0;
virtual int blocksize() = 0;

};

Compare to buffer 
pool assignment in 
CS2604

Differences:

Computer Science Dept Va Tech August 2007 ©2007  Back

Disk Systems

Operating Systems

12Buffer Cache Sizing

Simple approach
– Set aside part of physical memory for buffer cache/use rest for virtual memory 

pages as page cache – evict buffer/page from same pool

Disadvantage: can’t use idle memory of other pool - usually use unified cache 
subject to shared eviction policy

Windows allows user to limit buffer cache size

Problem:
– Bad prediction of buffer caches accesses can result in poor VM performance (and 

vice versa)
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13Buffer Cache Replacement

Similar to VM Page Replacement, differences:
– Can do exact LRU (because user must call cache_get_block()!)
– But LRU hurts when long sequential accesses – should use MRU (most recently 

used) instead.

Example reference string: ABCDABCDABCD, can cache 3:
– LRU causes 12 misses, 0 hits, 9 evictions
– How many misses/hits/evictions with MRU?

Also: not all blocks are equally important, benefit from some hits more than from 
others
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14Buffer Cache Writeback Strategies

Write-Through:
– Good for floppy drive, USB stick
– Poor performance – every write causes disk access

(Delayed) Write-Back:
– Makes individual writes faster – just copy & set bit
– Absorbs multiple writes
– Allows write-back in batches

Problem: what if system crashes before you’ve written data back?
– Trade-off: performance in no-fault case vs. damage control in fault case
– If crash occurs, order of write-back can matter
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15Writeback Strategies (2)

Must write-back on eviction (naturally)

Periodically (every 30 seconds or so)

When user demands:
– fsync(2) writes back all modified data belonging to one file – database 

implementations use this
– sync(1) writes back entire cache

Some systems guarantee write-back on file close
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16Buffer Cache Prefetching

Would like to bring next block to be 
accessed into cache before it’s accessed

– Exploit “Spatial locality”
Must be done in parallel

– use daemon thread and 
producer/consumer pattern

Note: next(n) not always equal to n+1
– although we try for it – via clustering to 

minimize seek times
Don’t initiate read_ahead if next(n) is 

unknown or would require another disk 
access to find out

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

b = cache_get_block(n, _);
cache_read_block(b);
cache_readahead(next(n));

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
signal qcond;
q.unlock();

}
cache_readahead_daemon() {

while (true) {
q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}

queue q;
cache_readahead(sector s) {

q.lock();
q.add(request(s));
signal qcond;
q.unlock();

}
cache_readahead_daemon() {

while (true) {
q.lock();
while (q.empty())
qcond.wait();

s = q.pop();
q.unlock();
read sector(s);

}
}


