I TLB: Translation Look-Aside Buffer

Virtual Memory 1

Virtual-to-physical translation is part of every instruction (why not only load/store
instructions?)

Thus must execute at CPU pipeline speed

TLB caches a number of translations in fast, fully-associative memory

typical: 95% hit rate (locality of reference principle)

Perm VPN PPN
RWX K 0xC0000 0x00000
RWX K 0xC0001 0x00001
R-X K 0xC0002 0x00002
R-- K 0xC0003 0x00003

0xC0002345
VPN: Virtual Page Number

}

| TLB | Offset

}
0x00002345

[—

PPN: Physical Page Number

W TLB Management

Virtual Memory 2

Note: on previous slide example, TLB entries did not have a process id

As is true for x86

Then: if process changes, some or all TLB entries may become invalid
X86: flush entire TLB on process switch (refilling adds to cost!)

Some architectures store process id in TLB entry (MIPS)

Flushing (some) entries only necessary when process id reused

I Address Translation & TLB virtual Memory 3

Virtual Address done in hardware
restart instruction l T3 7 (065 EBITETE
TLB Lookup

done in software
or hardware

machine-dependent miss

Page Table Walk
Check Permissions
page present denied ok

— TLB Reload Page Fault Exception Page Fault Exception Physical Address
“Page Not Present” “Protection Fault”
machine-independent |
logic)
Load Page Terminate Process

uter Science Dept Va Tech August 2007 Operating Systems

M Page Tables vs TLB Consistency Virtual Memory 4

No matter which method is used, OS must ensure that TLB & page tables are consistent
On multiprocessor, this may require “TLB shootdown”

For software-reloaded TLB: relatively easy
TLB will only contain what OS handlers place into it

For hardware-reloaded TLB: two choices

Use same data structures for page table walk & page loading (hardware designers reserved
bits for OS’s use in page table)

Use a layer on top (facilitates machine-independent implementation) — this is the
recommended approach for Pintos Project 3

In this case, must update actual page table (on x86: “page directory”) that is consulted by MMU
during page table walk

Code is already written for you in pagedir.c

Operating Systems

| Example: x86 Page Table Entry

Page-Table Entry (4-KByte Page)

31 121

Virtual Memory 5

9876543210

P
Availl |G|A|D[A

Page Base Address .

P|P

Clw
DT

u
!
S

I|P

Available for system programmer’s use
Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled

|

Write-Through

User/Supervisor

Read/\Write

Present

Note: if bit 0 is 0 (“page not present”) MMU will ignore bits 1-31 — OS can use those
at will
Computer Science Dept Va Tech August 2007 Operating Systems

©2003-07 McQuain

H Lazy Loading

FFFFFFFF
P1

C0400000

en starts the first

Virtual Memory 6

Pintos loads the first process ...

ame has been allocated

ucode (1)
0o ——

Computer Science Dept Va Tech August 2007

Operating Systems

m

O

A aults because.code
notpresen
dthlS whRen

ing_address+in data
C0000000_, ..
| |ustack (1)

m

(D E = S

™ in_page table; but no physical

2003-07 McQuain

H Stack Growth
FFFFFFFF

P1

C0400000

Rintos-then starts the first

prace

1GB

athlS beca
esent...

OC
page is-notp

Rrocess Calls recursive
HACUIOR-Or aHQcate a
G0000000_, ocal variable

Virtual Memory 7

Pintos loads the first process ...

e.code

page fault at

3GB

ucode (1)
o' b&

Computer Science Dept Va Tech August 2007

Operating Systems

I Microscopic View of Stack Growth

push $ebp
sub $20, $esp
push $eax™—]

|._esp = 0x8004 / Jpush $ebx
esp= 0xsooy
esp = OX7FE

[““esp = Ox7FE8

0x8000

Virtual Memory 8

Page Fault!

““esp = Ox7FE4

void page_fault() {
t fault addr L
Can resume after page fa%%éjﬁ{llﬁg?ﬁsﬁ,é%%g éstgh&gg

instruction (here] pusi™$e:
MMU will wlk halfRir@iogatf Ragaframe
install page in page table

No: terminate process

}

Computer Science Dept Va Tech August 2007 Operating Systems

intrOe_stub:

call page_fault()

the faulting

2003-07 McQuain

| Heap Growth Virtual Memory 9

FFFFFFFF
P1
50400000 Pintos loads the first process ...
m en starts the first
O
- e.code
C0000000_, ~
Q)
&2 used
ess calls sbrk(addr)
[
(N
Computer Science Dept Va Tech August 2007 Operating Systems or o

H mmap()

Virtual Memory 10

FFFFFFFF

C0400000

1GB

CG0000000_,

3GB

0—»

P1

Pintos loads the first process ...

en starts the first

e.code

Page fault

page, maps it, reads <

o //

used

'_V

Computer Science Dept Va Tech August 2007 Operating Systems ©2003-07 McQuain

H Copy-On-Write Virtual Memory 11

Sometimes, want to create a copy of a page:
Example: Unix fork() creates copies of all parent’s pages in the child

Optimization:
Don’t copy pages, copy PTEs — now have 2 PTEs pointing to frame
Set all PTEs read-only
Read accesses succeed
On Write access, copy the page into new frame, update PTEs to point to new & old frame

Looks like each have their own copy, but postpone actual copying until one is writing the
data

Hope is at most one will ever touch the data — never have to make actual copy

Operating Systems

