
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

1TLB: Translation Look-Aside Buffer

Virtual-to-physical translation is part of every instruction (why not only load/store
instructions?)

– Thus must execute at CPU pipeline speed
TLB caches a number of translations in fast, fully-associative memory

– typical: 95% hit rate (locality of reference principle)

0xC0002345

0x000023450x000030xC0003R-- K

PPNVPNPerm

………

0x000020xC0002R-X K
0x000010xC0001RWX K
0x000000xC0000RWX K

TLBTLB

VPN: Virtual Page Number

PPN: Physical Page Number

Offset

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

2TLB Management

Note: on previous slide example, TLB entries did not have a process id
– As is true for x86

Then: if process changes, some or all TLB entries may become invalid
– X86: flush entire TLB on process switch (refilling adds to cost!)

Some architectures store process id in TLB entry (MIPS)
– Flushing (some) entries only necessary when process id reused

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

3Address Translation & TLB

Virtual Address

TLB Lookup

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Table Walk

Page Fault Exception
“Page Not Present”

TLB Reload

Terminate Process

miss hit

restart instruction

page present else
okdenied

Load Page

done in hardware

done in OS software

done in software
or hardwaremachine-dependent

machine-independent
logic

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

4Page Tables vs TLB Consistency

No matter which method is used, OS must ensure that TLB & page tables are consistent
– On multiprocessor, this may require “TLB shootdown”

For software-reloaded TLB: relatively easy
– TLB will only contain what OS handlers place into it

For hardware-reloaded TLB: two choices
– Use same data structures for page table walk & page loading (hardware designers reserved

bits for OS’s use in page table)
– Use a layer on top (facilitates machine-independent implementation) – this is the

recommended approach for Pintos Project 3
In this case, must update actual page table (on x86: “page directory”) that is consulted by MMU
during page table walk
Code is already written for you in pagedir.c

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

5Example: x86 Page Table Entry

Note: if bit 0 is 0 (“page not present”) MMU will ignore bits 1-31 – OS can use those
at will

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

6

ustack (1)

Lazy Loading

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process faults when
touching address in data
segment …

stack page was allocated eagerly

data + code pages are noted
in page table, but no physical
frame has been allocated

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

7

ustack (2)
ustack (1)

Stack Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process calls recursive
function or allocates large
local variable

page fault at about here

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

8Microscopic View of Stack Growth

push $ebp
sub $20, $esp
push $eax
push $ebx

push $ebp
sub $20, $esp
push $eax
push $ebx

0x8000
esp = 0x8004
esp = 0x8000

esp = 0x7FEC
esp = 0x7FE8

intr0e_stub:
…
call page_fault()
…
iret

intr0e_stub:
…
call page_fault()
…
iret

Page Fault!

void page_fault() {
get fault addr
determine if it’s close to user $esp
Yes: allocate page frame

install page in page table
No: terminate process

}

esp = 0x7FE4

Can resume after page fault (and unless f→eip is changed) this will retry the faulting
instruction (here: push $eax)

– MMU will walk hardware page table again

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

9

ustack (1)

Heap Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process needs memory to
place malloc() objects in

Process calls sbrk(addr)udata (2)

Process faults when
touching new memory

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

10

ustack (1)

mmap()

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …

P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process opens file, calls
mmap(fd, addr)

ummap (1)

Process faults when
touching mapped file

Page fault handler allocs
page, maps it, reads
data from disk:

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

11Copy-On-Write

Sometimes, want to create a copy of a page:
– Example: Unix fork() creates copies of all parent’s pages in the child

Optimization:
– Don’t copy pages, copy PTEs – now have 2 PTEs pointing to frame
– Set all PTEs read-only
– Read accesses succeed
– On Write access, copy the page into new frame, update PTEs to point to new & old frame

Looks like each have their own copy, but postpone actual copying until one is writing the
data

– Hope is at most one will ever touch the data – never have to make actual copy

