I TLB: Translation Look-Aside Buffer
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Virtual-to-physical translation is part of every instruction (why not only load/store
instructions?)

Thus must execute at CPU pipeline speed

TLB caches a number of translations in fast, fully-associative memory

typical: 95% hit rate (locality of reference principle)
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Note: on previous slide example, TLB entries did not have a process id

As is true for x86

Then: if process changes, some or all TLB entries may become invalid
X86: flush entire TLB on process switch (refilling adds to cost!)

Some architectures store process id in TLB entry (MIPS)

Flushing (some) entries only necessary when process id reused




I Address Translation & TLB virtual Memory 3

Virtual Address done in hardware
restart instruction l T3 7 (065 EBITETE
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done in software
or hardware
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Check Permissions
page present denied ok
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“Page Not Present”  “Protection Fault”
machine-independent |
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M Page Tables vs TLB Consistency Virtual Memory 4

No matter which method is used, OS must ensure that TLB & page tables are consistent
On multiprocessor, this may require “TLB shootdown”

For software-reloaded TLB: relatively easy
TLB will only contain what OS handlers place into it

For hardware-reloaded TLB: two choices

Use same data structures for page table walk & page loading (hardware designers reserved
bits for OS’s use in page table)

Use a layer on top (facilitates machine-independent implementation) — this is the
recommended approach for Pintos Project 3

In this case, must update actual page table (on x86: “page directory”) that is consulted by MMU
during page table walk

Code is already written for you in pagedir.c
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| Example: x86 Page Table Entry

Page-Table Entry (4-KByte Page)

31 121
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Available for system programmer’s use
Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled

|

Write-Through

User/Supervisor

Read/\Write

Present

Note:  if bit 0 is 0 (“page not present”) MMU will ignore bits 1-31 — OS can use those
at will
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H Lazy Loading
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Pintos loads the first process ...

ame has been allocated
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0o ——
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H Stack Growth
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Pintos loads the first process ...
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I Microscopic View of Stack Growth

push $ebp
sub $20, $esp
push $eax™—]

|._esp = 0x8004 / Jpush $ebx
esp= 0xsooy
esp = OX7FE

[““esp = Ox7FE8

0x8000
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Page Fault!

““esp = Ox7FE4

void page_fault() {
t fault addr L
Can resume after page fa%%éjﬁ{llﬁg?ﬁsﬁ,é%%g éstgh&gg

instruction (here] pusi™$e:
MMU will wlk halfRir@iogatf Ragaframe
install page in page table

No: terminate process

}
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intrOe_stub:

call page_fault()

the faulting
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H mmap()
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Sometimes, want to create a copy of a page:
Example: Unix fork() creates copies of all parent’s pages in the child

Optimization:
Don’t copy pages, copy PTEs — now have 2 PTEs pointing to frame
Set all PTEs read-only
Read accesses succeed
On Write access, copy the page into new frame, update PTEs to point to new & old frame

Looks like each have their own copy, but postpone actual copying until one is writing the
data

Hope is at most one will ever touch the data — never have to make actual copy

Operating Systems




