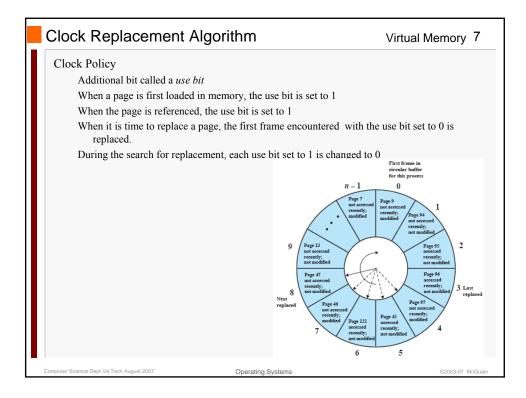

Page Size	•	Virtual Memory 1
 more pag more pag larger pag larger nut 	ant of internal fragmentation es required per process es per process means larger page tables ge tables means large portion of page tables i mber of pages may be found in main memory nakes more page to page transitions, so more	, so reduced # of page faults
is better	y memory is designed to efficiently transfer y be more likely to contain references to far- ts	
Expectation:	as time goes on during execution, the portions of the process near recent refe	
Computer Science Dept Va Teo	ch August 2007 Operating Systems	©2003-07 McQuain



Example Page	Sizes		Virtual Memory 3
	Table 8.2 Exam		
	Computer	Page Size	
	Atlas	512 48-bit words	
	Honeywell-Multics	1024 36-bit word	
	IBM 370/XA and 370/ESA	4 Kbytes	
	VAX family	512 bytes	
	IBM AS/400	512 bytes	
	DEC Alpha	8 Kbytes	
	MIPS	4 kbyes to 16 Mbytes	
	UltraSPARC	8 Kbytes to 4 Mbytes	
	Pentium	4 Kbytes or 4 Mbytes	
	PowerPc	4 Kbytes	
	Itanium	4 Kbytes to 256 Mbytes	
Computer Science Dept Va Tech August 200	Itanium	4 Kbytes to 256 Mbytes	

Fetch Policy		Virtual Memory 4
 Demand paging only brings p location on the page many page faults when p fetches only pages that a easy to make decision universal choice for depl Prepaging brings in more page more efficient to bring in 	re actually needed by the proc oyed paged VM systems tes than needed pages that reside contiguousl cking pages to pre-fetch, no go fetching	ry a reference is made to a ess y on the disk
Computer Science Dept Va Tech August 2007	Operating Systems	©2003-07 McQuain

Re	eplacement Policy		Virtual Memory 5
If	 eplacement policy decides which Belady's Optimal policy: page rernear future Belady's Optimal policy is clearly most policies predict the future be selected page has been modified it moverwritten. rame Locking if frame is locked, it may not be rescuence of the operating system control structures I/O buffers associate a lock bit with each fram 	noved should be the page least like v infeasible havior on the basis of past behavio ust be written back to virtual memo eplaced	r
Compu	ter Science Dept Va Tech August 2007	Operating Systems	©2003-07 McQuain

Examples								Vi	rtual	Memo	ry 8
Page address stream	2 3	2 1	5	2	4 5	3	2	5	2		
OPT	2 2 3	$\begin{array}{c} 2 \\ 3 \\ \hline 1 \end{array}$	2 3 5 F	2 3 5	4 4 3 3 5 5 F	4 3 5	2 3 5 F	2 3 5	2 3 5		
LRU		$\begin{array}{c} 2 \\ 3 \\ \hline 1 \end{array}$	2 5 1 F	2 5 1	2 2 5 5 4 4 F	3 5 4 F	3 5 2 F	3 5 2	3 5 2		
FIFO	2 2 3	$\begin{array}{c c} 2 & 2 \\ \hline 3 & 3 \\ \hline 1 \end{array}$	5 3 1 F		5 5 2 2 4 4 F	3 2 4 F	3 2 4	3 5 4 F	3 5 2 F		
CLOCK	→ <u>2*</u> 3*	2* 3* ↓ 1*	5* 3 1 F	2* 2 1 4	5* 2* 4* F	3* 2 4 F	3* 2* 4	→ 3* 2 5* F	→ <u>3*</u> <u>2*</u> 5*		
	F = page f	ault occurring a	fter the fran	ne allocatio	n is initially	filled					
Computer Science Dept Va Tech August 2007	,	c	Operating S	Systems						©2003-	07 McQuain