
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

1Opportunity

Memory references are dynamically translated into physical addresses at run time
A process may be swapped in and out of main memory such that it occupies different regions

A process may be broken up into pieces that do not need to located contiguously in main
memory

Not all pieces of a process need to be loaded in main memory at once during execution

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

2Execution of a Program

Operating system brings into main memory a few pieces of the program

Resident set - portion of process that is in main memory

An interrupt is generated when an address is needed that is not in main memory – page
fault

Operating system places the process in a blocking state

Piece of process that contains the logical address is brought into main memory
Operating system issues a disk I/O Read request
Another process is dispatched to run while the disk I/O takes place
An interrupt is issued when disk I/O complete which causes the operating system to place the

affected process in the Ready state

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

3Advantages of Breaking up a Process

More processes may be maintained in main memory
Only load in some of the pieces of each process
With so many processes in main memory, it is very likely at least one process will be in the

Ready/Run state at any particular time

A process may be larger than all of main memory

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

4Terminology

Real memory physical memory, RAM, main memory

Virtual memory secondary storage holding process images

Thrashing phenomenon that a process is spending more time paging than
executing

Locality program and data references within a process tend to cluster;
implies that only a few pieces of a process will be needed over a short
period of time;
possible to make intelligent guesses about which pieces will be
needed in the future;
suggests that virtual memory may work efficiently

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

5Paging

Each process has its own page table

Each page table entry contains the frame number of the corresponding page in main
memory

A resident bit is needed to indicate whether the page is currently in main memory

Modify bit is needed to indicate if the page
has been altered since it was last loaded
into main memory

If no change has been made, the page does
not have to be written to the disk when it
needs to be swapped out

Page Number Offset

r m . . . Frame Number

virtual address

page table entry

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

6Address Translation

Page # is leftmost
n = 32 - k bits of
virtual address…

… so no arithmetic
is necessary to
extract it…

Frame # is just contatenated with
offset to obtain physical address

If page size is 2k…

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

7Cost of Page Indexing

The entire page table may take up too much main memory
- each process may typically be allowed a virtual memory space of 2 GB or more
- given 4 KB pages, and a 4GB virtual space, there could be 220 page table entries for

each process
- each page table entry would occupy, say, 4 bytes of space, so the page table would

occupy 4 MB of memory (per process), or 210 frames/pages

Therefore, page tables are also stored in virtual memory and loaded into main memory as
needed.

The 220 page table entries can be efficiently indexed using a 2-level structure:
- the 210 pages of the page table can be indexed via a root page table with 210 entries,

needing only 4 KB (one page) of main memory
- lock the root page table in main memory…

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

8Two-Level Scheme for 32-bit Address

Root page table needs only 1 page of main memory

Root page table provides
virtual page # of relevant
section of process page table

Each page of the process
page table provides access to
210 pages of the process in
virtual space

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

9Page Tables

The entire page table may take up too much main memory
Page tables are also stored in virtual memory
When a process is running, part of its page table is in main memory

Inverted page table
- page number portion of a virtual address is mapped into a hash value
- hash value points to inverted page table
- fixed proportion of real memory is required for the tables regardless of the number of

processes
- used on PowerPC, UltraSPARC, and IA-64 architecture

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

10Translation Lookaside Buffer

Each virtual memory reference can cause two physical memory accesses
- one to fetch the page table
- one to fetch the data

To overcome this problem a high-speed cache is set up for page table entries
- called a Translation Lookaside Buffer (TLB)
- contains page table entries that have been most recently used

Given a virtual address, processor examines the TLB

If page table entry is present (TLB hit):
- the frame number is retrieved and the real address is formed

If page table entry is not found in the TLB (TLB miss):
- the page number is used to index the process page table
- if page is already in main memory, proceed
- if not, trigger a page fault
- update TLB to index the new page

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

11Translation Lookaside Buffer

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

12Paging/TLB Flowchart

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

13Direct Mapping

Page # is index of
corresponding
entry in the page
table, so the
relevant table
entry can be found
in Θ(1) time via
the page table.

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

14Associative Mapping

Unfortunately, the TLB does not
contain all of the entries that would
be in the page table.

So, direct mapping won’t work in
the TLB.

But, we still need efficient lookup.

The TLB would support fully
associative lookup… in simplest
terms, every location in the TLB
can be compared to the desired
value at once, so lookup will still be
Θ(1).

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech August 2007 ©2003-07 McQuain

Virtual Memory

Operating Systems

15VM/Cache Interaction

Virtual address is resolved into a physical address by using
the TLB and page table.

Physical address is passed to cache manager.

If requested location is not
in the cache, it is fetched
from main memory into the
cache and then served up to
the process.

