
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

1Memory Management

Subdividing memory to accommodate multiple processes

Memory needs to be allocated to ensure a reasonable supply of ready processes to
consume available processor time

Relocation
Programmer does not know where the program will be placed in memory when it is executed
While the program is executing, it may be swapped to disk and returned to main memory at a

different location (relocated)
Memory references must be translated in the code to actual physical memory address

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

2Addressing Requirements

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

3Memory Management Requirements

Protection
Processes should not be able to reference memory locations in another process without

permission
Impossible to check absolute addresses at compile time
Must be checked at run time
Memory protection requirement must be satisfied by the processor (hardware) rather than the

operating system (software)
Operating system cannot anticipate all of the memory references a program will make

Sharing
Allow several processes to access the same portion of memory
Better to allow each process access to the same copy of the program rather than have their own

separate copy

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

4Memory Management Requirements

Logical Organization
Programs are written in modules
Modules can be written and compiled independently
Different degrees of protection given to modules (read-only, execute-only)
Share modules among processes

Physical Organization
Memory available for a program plus its data may be insufficient

Overlaying allows various modules to be assigned the same region of memory
Programmer does not know how much space will be available

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

5Fixed Partitioning

Equal-size partitions
Any process whose size is less than or equal to the partition size

can be loaded into an available partition
If all partitions are full, the operating system can swap a process

out of a partition
A program may not fit in a partition. The programmer must

design the program with overlays

Main memory use is inefficient. Any program, no matter how
small, occupies an entire partition. This is called internal
fragmentation.

Because all partitions are of equal size, it does not matter
which partition is used, so placement algorithm is essentially
trivial.

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

6Fixed Partitioning

Main memory use is potentially more efficient. Any program, no
matter how small or large is placed in a closer-sized partition.
Does not eliminate internal fragmentation.

Management of partitions is more complex, hence more
overhead.

Unequal-size partitions
Can assign each process to the smallest partition within which

it will fit
Queue for each partition
Processes are assigned in such a way as to minimize wasted

memory within a partition

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

7Process Scheduling

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

8Dynamic Partitioning

Partitions are of variable length and number

Process is allocated exactly as much memory as required

Eventually get holes in the memory. This is called external fragmentation

Must use compaction to shift processes so they are contiguous and all free memory is in
one block

However, compaction is time-consuming, and it requires some scheme for adjusting
addresses when relocating processes in memory

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

9Effect of Dynamic Partitioning

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

10DP Placement Algorithm

Operating system must decide which free block to allocate to a process

Best-fit algorithm
Chooses the block that is closest in size to the request
Worst performer overall
Since smallest block is found for process, the smallest amount of fragmentation is left
Memory compaction must be done more often

First-fit algorithm
Scans memory form the beginning and chooses the first available block that is large enough
Fastest
May have many process loaded in the front end of memory that must be searched over when

trying to find a free block

Next-fit
Scans memory from the location of the last placement
More often allocate a block of memory at the end of memory where the largest block is found
The largest block of memory is broken up into smaller blocks
Compaction is required to obtain a large block at the end of memory

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

11Examples

Before and after allocation of a
16MB block:

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

12Buddy System

Entire space available is treated as a single block of 2U

If a request of size s such that 2U-1 < s <= 2U, entire block is allocated
Otherwise block is split into two equal buddies
Process continues until smallest block greater than or equal to s is generated

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

13Paging

Partition memory into small equal fixed-size chunks and divide each process into the same size
chunks

The chunks of a process are called pages and chunks of memory are called frames

Operating system maintains a page table for each process
Contains the frame location for each page in the process
Memory address consist of a page number and offset within the page

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

14Allocation of Free Frames

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

15Segmentation

All segments of all programs do not have to be of the same length
There is a maximum segment length
Addressing consist of two parts - a segment number and an offset
Since segments are not equal, segmentation is similar to dynamic partitioning

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

16Logical Addresses

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

17Address Translation

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

18Relocation and Addresses

When program loaded into memory the actual (absolute) memory locations are determined

A process may occupy different partitions at different times, which means different absolute memory
locations during execution (from swapping)

Compaction will also cause a program to occupy a different partition which means different absolute
memory locations

Paging and segmenting will fragment a process into discontiguous pieces.

Logical address
Reference to a memory location independent of the current assignment of data to memory
Translation must be made to the physical address

Relative address
Address expressed as a location relative to some known point

Physical address
The absolute address or actual location in main memory

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

19Process Image

First step in process creation is to load the program into memory and create a process image.

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

20Process Loading

The loader has the responsibility of placing the process image into memory, given the load module
created by the linker.

Here’s a typical overview (assuming contiguous allocation of main memory):

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

21Linking

The linker takes a collection of object modules as input and produces a load module, consisting of an
integrated set of program and data modules, which will be processed by the loader.

Resolves symbolic inter-module address references.

Resolves symbolic library address references.

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

22Absolute Load Module

An absolute load module would be created by mapping references to absolute addresses depending
upon a specific base address at load time:

Link-time binding of references to physical addresses.

Simple processing by linker.

Loader simply copies load module into memory.

Loader MUST copy load module to correct base address
or program will not execute correctly.

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

23Relative Load Module

A relative load module would be created by mapping references to relative addresses that would be
translated to physical addresses at load time.

Load-time binding of relative references to physical
addresses.

Linker must leave tags in the load module to guide the
loader’s actions – relocation dictionary.

Loader must find each relative address in the load
module and add the base address (determined at load
time) to it.

Too expensive for systems that use swapping to control
system load.

Logically inadequate for systems that use paging or
segmented memory management.

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

24Dynamically Relocatable Load Module

A dynamically relocatable load module would also be created by mapping references to relative
addresses that would be translated to physical addresses at run time.

Run-time binding of relative references to physical
addresses.

Loader merely copies load module with relative
addresses into memory.

Hardware support MUST be provided to make this
efficient.

Dominant form of loading on modern systems.

CS 3204 Operating Systems

©William D McQuain, January 2005 13

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

25Object Module to Load Module

The linker that produces a relocatable
load module works something like
this:

Computer Science Dept Va Tech October 2007 ©2003-07 McQuain

MM Background

Operating Systems

26Relocation and Hardware

Base register
Starting address for the process

Bounds register
Ending location of the process

These values are set when the process is
loaded or when the process is swapped
in

The value of the base register is added to a
relative address to produce an absolute
address

The resulting address is compared with the
value in the bounds register

If the address is not within bounds, an
interrupt is generated to the operating
system

