
1

Pintos: Threads Project

Slides by: Vijay Kumar
Updated by Godmar Back

Introduction to Pintos

Simple OS for the 80x86 architecture
Capable of running on real hardware
We use bochs, qemu to run Pintos
Provided implementation supports kernel
threads, user programs and file system
In the projects, strengthen support for these
+ implement support for virtual memory

Development Environment

Use the machines in McB 124 for the projects
Alternately, log on to the Linux cluster remotely
using SSH
ssh –Y yourlogin@rlogin.cs.vt.edu (for trusted X11 forwarding)

Use CVS
- for managing and merging code written by the team

members
- keeping track of multiple versions of files

CVS Setup
Start by choosing a code keeper for your group
Keeper creates repository on ‘ap2’
Summary of commands to setup CVS

ssh ap2
cd /shared/cs3204
mkdir Proj-keeper_pid
setfacl --set u::rwx,g::---,o::--- Proj-keeper_pid
for all other group members do:
setfacl -m u:member-pid:rwx Proj-keeper_pid
setfacl -d --set u::rwx,g::---,o::--- Proj-keeper_pid
for all group members, including the keeper, do:
setfacl -d -m u:member_pid:rwx Proj-keeper_pid
cvs -d /shared/cs3204/Proj-keeper_pid init
cd /home/courses/cs3204/pintos/pintos
cvs -d /shared/cs3204/Proj-keeper_pid import -m "Imported sources" pintos foobar start

Using CVS

ap2.cs.vt.edu containing

repository

import

checkout
& update

commit

Development machine

in McB124

contains “working directory”
Other useful CVS commands

- diff

- add

- remove

- update

ssh t
rans

port

Getting started with Pintos
Set env variable CVS_RSH to /usr/bin/ssh
export CVS_RSH=/usr/bin/ssh
If you don’t, it will assume “rsh” which is not a supported service. Connection failures or timeouts
will result.

Check out a copy of the repository to directory ‘dir’
cvs -d :ext:your_pid@ap2.cs.vt.edu:/shared/cs3204/Proj-keeper_pid checkout -d dir pintos

Add ~cs3204/bin to path add to .bash_profile
export PATH=~cs3204/bin:$PATH

Build pintos
cd dir/src/threads
make
cd build
pintos run alarm-multiple

2

Project 1 Overview

Extend the functionality of a minimally
functional thread system
Implement

- Alarm Clock
- Priority Scheduling

- Including priority inheritance

- Advanced Scheduler

Pintos Thread System

struct thread
{

tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
/* Shared between thread.c and synch.c. */
struct list_elem elem; /* List element. */

You add more fields here as you need them.

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir; /* Page directory. */

#endif
/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

struct thread
{

tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
/* Shared between thread.c and synch.c. */
struct list_elem elem; /* List element. */

You add more fields here as you need them.

#ifdef USERPROG
/* Owned by userprog/process.c. */
uint32_t *pagedir; /* Page directory. */

#endif
/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

Pintos Thread System (contd…)

Read threads/thread.c and threads/synch.c to
understand

- How the switching between threads occur
- How the provided scheduler works
- How the various synchronizations primitives

work

Alarm Clock
Reimplement timer_sleep() in devices/timer.c
without busy waiting

/* Suspends execution for approximately TICKS timer ticks. */
void timer_sleep (int64_t ticks){
int64_t start = timer_ticks ();
ASSERT (intr_get_level () == INTR_ON);
while (timer_elapsed (start) < ticks)
thread_yield ();

}

Implementation details
- Remove thread from ready list and put it back after

sufficient ticks have elapsed

Priority Scheduler
Ready thread with highest priority gets the processor
When a thread is added to the ready list that has a higher
priority than the currently running thread, immediately yield
the processor to the new thread
When threads are waiting for a lock, semaphore or a
condition variable, the highest priority waiting thread should
be woken up first
Implementation details

- compare priority of the thread being added to the ready list with that
of the running thread

- select next thread to run based on priorities
- compare priorities of waiting threads when releasing locks,

semaphores, condition variables

Priority Based Scheduling

MIN

MAX

H
ig

he
r P

rio
rit

y

2

3

6

Only threads with the highest priority run
If more than one, round-robin

3

Priority Inversion
Strict priority scheduling can lead to a phenomenon called
“priority inversion”
Supplemental reading:

What really happened on the Mars Pathfinder? [comp.risks]
Consider the following example where
prio(H) > prio(M) > prio(L)
H needs a lock currently held by L, so H blocks
M that was already on the ready list gets the processor before L
H indirectly waits for M

(on Path Finder, a watchdog timer noticed that H failed to run for
some time, and continuously reset the system)

Priority Donation

When a high priority thread H waits on a lock
held by a lower priority thread L, donate H’s
priority to L and recall the donation once L
releases the lock
Implement priority donation for locks
Handle the cases of multiple donations and
nested donations

Multiple Priority Donations:
Example

lock_acquire (&a);
lock_acquire (&b);

thread_create ("a", PRI_DEFAULT + 1, a_thread_func, &a);
msg ("Main thread should have priority %d. Actual priority:
%d.", PRI_DEFAULT + 1, thread_get_priority ());

thread_create ("b", PRI_DEFAULT + 2, b_thread_func, &b);
msg ("Main thread should have priority %d. Actual priority:
%d.", PRI_DEFAULT + 2, thread_get_priority ());

Low Priority thread
static void a_thread_func (void *lock_)
{

struct lock *lock = lock_;
lock_acquire (lock);
msg ("Thread a acquired lock a.");
lock_release (lock);
msg ("Thread a finished.");

}

Medium Priority thread

static void b_thread_func (void *lock_)
{

struct lock *lock = lock_;
lock_acquire (lock);
msg ("Thread b acquired lock b.");
lock_release (lock);
msg ("Thread b finished.");

}

High Priority thread

Low

Medium

High via ‘b’

via ‘a’

Nested Priority Donations:
Example

lock_acquire (&a);
locks.a = &a;
locks.b = &b;

thread_create ("medium", PRI_DEFAULT + 1, m_thread_func, &locks);
msg ("Low thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT + 1, thread_get_priority ());

thread_create ("high", PRI_DEFAULT + 2, h_thread_func, &b);
msg ("Low thread should have priority %d. Actual priority: %d.",
PRI_DEFAULT + 2, thread_get_priority ());

Low Priority thread static void m_thread_func (void *locks_)
{

struct locks *locks = locks_;
lock_acquire (locks->b);
lock_acquire (locks->a);

msg ("Medium thread should have priority %d.
Actual priority: %d.", PRI_DEFAULT + 2,

thread_get_priority ());
…}

Medium Priority thread

static void h_thread_func (void *lock_)
{

struct lock *lock = lock_;

lock_acquire (lock);
…}

High Priority thread

LowMediumHigh
via ‘b’ via ‘a’

Advanced Scheduler
Implement Multi Level Feedback Queue Scheduler
Priority donation not needed in the advanced scheduler –
two implementations are not required to coexist

Only one is active at a time
Advanced Scheduler must be chosen only if ‘–mlfqs’ kernel
option is specified
Read section on 4.4 BSD Scheduler in the Pintos manual for
detailed information
Some of the parameters are real numbers and calculations
involving them have to be simulated using integers.

Write a fixed-point layer (header file)

Typesafe Fixed-Point Layer
typedef struct

{
double re;
double im;

} complex_t;

static inline complex_t
complex_add(complex_t x, complex_t y)
{

return (complex_t){ x.re + y.re, x.im + y.im };
}

static inline double
complex_real(complex_t x)
{

return x.re;
}

static inline double
complex_imaginary(complex_t x)
{

return x.im;
}

static inline double
complex_abs(complex_t x)
{

return sqrt(x.re * x.re + x.im * x.im);
}

4

Suggested Order
Alarm Clock

- easier to implement compared to the other parts
- other parts not dependent on this

Priority Scheduler
- needed for implementing Priority Donation and

Advanced Scheduler
Priority Donation | Advanced Scheduler

- these two parts are independent of each other
- can be implemented in any order but only after Priority

Scheduler is ready

Debugging your code
printf, ASSERT, backtraces, gdb
Running pintos under gdb

- Invoke pintos with the gdb option
pintos --gdb -- run testname

- On another terminal invoke gdb
pintos-gdb kernel.o

- Issue the command
debugpintos

- All the usual gdb commands can be used: step, next,
print, continue, break, clear etc

- Use the pintos debugging macros described in manual

Tips
Read the relevant parts of the Pintos manual
Read the comments in the source files to understand
what a function does and what its prerequisites are
Be careful with synchronization primitives

- disable interrupts only when absolutely needed
- use locks, semaphores and condition variables instead

Beware of the consequences of the changes you
introduce

- might affect the code that gets executed before the boot
time messages are displayed, causing the system to reboot
or not boot at all

Tips (contd…)

Include ASSERTs to make sure that your code
works the way you want it to
Integrate your team’s code often to avoid surprises
Use gdb to debug
Make changes to the test files, if needed
Test using qemu simulator and the –j option with
bochs (introduces variability whereas default options
run in reproducibility mode)

Grading & Deadline
Tests – 50%

All group members get the same grade
Design – 50%

- data structures, algorithms, synchronization, rationale and
coding standards

- Each group member will submit those individually: you
can discuss them in the group, and ask each other
questions – but must create write-up individually.
Instructions will be posted on the website.

Due Sep 24, 2007 by 11:59pm

Good Luck!

