

Introduction to Pintos

- Simple OS for the 80x86 architecture
- Capable of running on real hardware
- We use bochs, qemu to run Pintos
- Provided implementation supports kernel threads, user programs and file system
- In the projects, strengthen support for these + implement support for virtual memory

- When a high priority thread H waits on a lock held by a lower priority thread L, donate H's priority to L and recall the donation once L releases the lock
- Implement priority donation for locks
- Handle the cases of multiple donations and nested donations

Typesafe Fixed-Point Layer	
<pre>typedef struct { double re; double im; } complex_t; static inline complex_t x, complex_t y) { return (complex_t){x.re + y.re, x.im + y.im }; static inline double complex_real(complex_t x) { return x.re; } }</pre>	<pre>static inline double complex_imaginary(complex_t x) { return x.im; } static inline double complex_abs(complex_t x) { return sqrt(x.re * x.re + x.im * x.im); }</pre>

