
1

1

Pintos Project #3
Virtual Memory

CS3204: Operating System
Xiaomo Liu
Fall 2007

2

Outline
Virtual memory concept
Current pintos memory management
Task

Lazy load
Stack growth
File memory mapping
Swapping

Suggestion
How to start
Implementation order

3

Virtual Memory Concept
VM is the logical memory layout
for every process

It is divided into kernel space
and user space
Kernel space is global (shared)
User space is local (individual)

Different from physical memory
Map to the physical memory
How to do it? Paging!

Divide the VM of a process into
small pieces (pages)– 4KB
“Randomly” permute their
orders in PM

Code

Data

BSS

Stack

start program
here

Heap

0

MAX_VIRTUAL

user space

kernel space

4

Virtual Memory Mapping
Page

4KB in VM

Frame
4KB in PM

One to one
mapping

0

1

3

v

5

Pintos Virtual Memory Management

Executable on Disk

Virtual Linear Address Space
(page)

Physical Memory
(frame)

User executable uses virtual,
space (0-3GB). They
are organized as segments.

PHYS_BASE

0

paddr = kvaddr – PHYS_BASE

Kernel space,
space (3-4GB)

6

Pintos Virtual Memory Mapping

Virtual address (31–12: page number, 11–0: offset)
Physical address (31-12: frame number, 11-0: offset)
Two-level mapping

Page number finds to the corresponding frame
Page offset finds to the corresponding byte in the frame

2

7

Pintos Virtual Memory
Mapping…

Three-level mapping

Find these vaddr.h
and pagedir.h/c for

its interface.

Virtual Memory Mapping

RAM Frames

8

Current Status (Before project 3)

Support multiprogramming
Load the entire data, code and stack
segments into memory before
executing a program (see load() in
process.c)
Fixed size of stack (1 page) to each
process
A restricted design!

9

Project 3 Requirement
Lazy load

Do not load any page initially
Load one page from executable when necessary

Stack growth
Allocate additional page for stack when necessary

File memory mapping
Keep one copy of opened file in memory
Keep track of which memory maps to which file

Swapping
If run out of frames, select one using frame
Swap it out to the swap disk
Return it as a free frame

10

Step 1: Frame “Table”
Functionalities

Keep track all the frames of physical memory used by the user
processes
Record the statuses of each frame, such as

Thread it belongs to (if any!)
Page table entry it corresponds to (if any!)
… (can be more)

Implementations (two possible approaches)
1. Modify current frame allocator “palloc_get_page(PAL_USER)”
2. Implement your own frame allocator on top of
“palloc_get_page(PAL_USER)” without modifying it. (Recommended)
Have a look at “init.c” and “palloc.c” to understand how they work
Not necessary to use hash table (need figure out by yourself)

Usage
Frame table is necessary for physical memory allocation and is used
to select victim when swapping.

11

Step 2: Lazy Loading
How does pintos load executables?

Allocate a frame and load a page of executable from file disk
into memory

Before project 3
Pintos will initially load all pages of executable into physical
memory

After project 3
Load nothing except setup the stack at the beginning
When executing the process, a page fault occurs and the page
fault handler checks where the expected page is: in executable
file (i.e. hasn’t loaded yet)? in swap disk (i.e. swapped out
already)?
If in executable, you need to load the corresponding page from
executable
If in swap disk, you need to load the corresponding page from
swap disk
Page fault handler needs to resume the execution of the
process after loading the page

12

Step 3: Supplemental Page
Table

Functionalities
Your “s-page table” must be able to decide where to load
executable and which corresponding page of executable to
load

Your “s-page table ” must be able to decide how to get swap
disk and which part (in sector) of swap disk stores the
corresponding page

Implementation
Use hash table (recommend)

Usage
Rewrite load_segment() (in process.c) to populate s-page
table without loading pages into memory
Page fault handler then loads pages after consulting s-page
table

3

13

Step 4: Stack Growth
Functionalities

Before project 3: user stack is fixed with size of 1 page, i.e. 4KB
After project 3: user stack is allows to allocate additional pages as
necessary

Implementation
If the user program exceeds the stack size, a page fault will occur
Catch the stack pointer, esp, from the interrupt frame
In page fault handler, you need to determine whether the faulted
address is “right below” the current end of the stack

Whether page fault is for lazy load or stack growth
Don’t consider fault addresses less than esp - 32

Calculate how many additional pages need to be allocated for stack; or
just allocated faulting page.
You must impose an absolute limit on stack size, STACK_SIZE

Consider potential for stack/heap collisions

14

Step 5: File Memory Mapping
Functionalities

Make open files accessible via
direct memory access – “map”
them

Storing data will write to file
Read data must come from
file

If file size is not multiple of
PGSIZE—sticks-out, may
cause partial page – handle
this correctly
Reject mmap when: zero
address or length, overlap, or
console file (tell by fd)

Memory

mapped

15

Step 5: File Memory Mapping…
Implementations

Use “fd” to keep track of the open files of a process
Design two new system calls: mapid_t mmap(fd,
addr) and void munmap(mapid_t)
Mmap() system call also populates the s-page table
Design a data structure to keep track of these
mappings (need figure out by yourself)
We don’t require that two processes that map the
same file see the same data
We do require that mmap()’ed pages are

Loaded lazily
Written back only if dirty
Subject to eviction if physical memory gets scarce

16

Step 6: Swap “table”
Functionalities

When out of free frames, evict a page from its frame and
put a copy of into swap disk, if necessary, to get a free
frame — “swap out”
When page fault handler finds a page is not memory but
in swap disk, allocate a new frame and move it to
memory — “swap in”

Implementation
Need a method to keep track of whether a page has been
swapped and in which part of swap disk a page has been
stored if so
Not necessary to use hash table (need figure out by
yourself)
Key insights: (1) only owning process will ever page-in a
page from swap; (2) owning process must free used
swap slots on exit

17

Step 7: Frame Eviction
Implementations

The main purpose of maintaining frame table is to
efficiently find a victim frame for swapping
Choose a suitable page replacement algorithm, i.e. eviction
algorithm, such as second chance algorithm, additional
reference bit algorithm etc. (See 9.4 of textbook)
Select a frame to swap out from frame table

Unfortunately, frame table entry doesn’t store access
bits
Refer frame table entry back to the page table entry (PTE)
Use accessed/dirty bit in PTE (must use pagedir_* function
here to get hardware bit.)

Send the frame to swap disk
Prevent changes to the frame during swapping first

Update page tables (both s-page table and hardware page
table via pagedir_* functions) as needed

18

Step 8: On Process Termination

Resource Management
Destroy your supplemental page table
Free your frames, freeing the
corresponding entries in the frame table
Free your swap slots (if any) and delete
the corresponding entries in the swap
table
Close all files: if a file is mmapped +
dirty, write the dirty mmapped pages
from memory back to the file disk

4

19

Important Issues

Synchronization
Allow parallelism of multiple processes
Page fault handling from multiple
processes must be possible in parallel
For example, if process A’s page fault
needs I/O (swapping or lazy load); and if
process B’s page fault does not need I/O
(stack growth or all ‘0’ page), then B
should go ahead without having to wait
for A.

20

Implementation Order
Suggestions

Pre-study
Understand memory & virtual memory (Lecture
slides and Ch 8 & 9 of the textbook)
Understand project specification (including
Appendix A.6, A.7 and A.8)
Understand the important pieces of source code
(process.c: load_segment(), exception.c:
page_fault())

Try to pass all the test cases of project 2
At least, argument passing and system call
framework should work

Frame table management

21

Implementation Order
Suggestions…

Supplemental page table management
Run regression test cases from project 2

They are already integrated in the P3 test cases
You kernel with lazy load should pass all the
regression test cases at this point

Implement stack growth and file memory
mapping in parallel
Swapping

Implement the page replacement algorithm
Implement “swap out” & “swap in” functionality

22

Other Suggestions

Working the VM directory
Create your page.h, frame.h, swap.h as well as
page.c, frame.c, swap.c in VM directory
Add your additional files to the makefile:
Makefile.build

Keep an eye on the project forum
Start the design document early

It counts 50% of your project scores!
Its questions can enlighten your design!
Is shared this time (1 per group)

23

Design Milestone
Decide on the data structures

Data structures for s-page table entry, frame table
entry, swap table entry
Data structures for the “tables” (not necessary a table)
such as hash table? array? list? Or bitmap?
Should your “tables” be global or per-process?

Decide the operations for the data structures
How to populate the entries of your data structures
How to access the entries of your data structures
How many entries your data structure should have
When & how to free or destroy your data structure

Deadline
October 24th 11:59pm, no extensions

24

End

Questions?
Good luck!

