
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

1Processes for Simplicity

Lots of stuff's going on in the system…

Make it simple…

Separate each in isolated process.

OS deals with one thing at a time; they just deal with the OS.

Manage complexity by decomposition.

nfsd
gccls

vi OS

nfsd gcc
ls

vi OS

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

2Processes for Speed

I/O parallelism:

Completion times are reduced.

gcc
vi Wait for input Wait for input

Overlap execution, effectively turn 1 CPU into many.

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

3Processes in the Real World

Processes and parallelism have been a fact of everyday life much longer than
OSes have existed.

Industrial processes use multiple production lines operating simultaneously to
increase throughput (# of items completed per unit time).

Can you always partition work to speed up the overall job?

Ideal speedup would be N-fold if N production lines are used.

Reality is that there are bottlenecks and overhead to coordinate lines.

Example: project groups in CS 3204

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

4What is a thread?

In practice, what's needed to run code on a CPU.

"execution stream in an execution context"

execution stream: sequence of instructions

CPU execution context (1 thread)

state: stack, heap, registers

position: PC

OS execution context (in threads)

identity + open file descriptors, VM page table, …

add $s0, $s1, $s3
sub $s0, $s4, $s0
sw $s0, 12($t7)

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

5What is a process?

process: thread + address space

or, abstraction representing what you need to run a thread on an OS

address space: encapsulates protection, passive notion

Why separate notion of thread from notion of process?

In many situations, you want multiple threads sharing a common address
space (servers, OS, parallel programs).

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

6A process is not a program

program: code + data, passive process: program in execution

may execute multiple instances of
a single program at onceint foo;

int main() {
printf("foo");

}

stack

heap
data
instr

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

7How to make a process?

Creation:

Load code and data into memory; create empty call stack.

Initialize state to same as after a process switch.

Add to OS's list of processes.

Clone:

Stop current process and save state.

Make copy of current instructions, data, stack and OS state.

Add new process to OS's list of processes.

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

8Unix

Fork clones a process.

Exec overlays the current process.

No create! Fork, then exec.

Pros: simple, clean

Cons: duplicate operations

if ((pid = fork()) == 0) {
// this is child process
exec(…); // exec does not return

}
else {

// this is parent
wait(pid); // wait for child to finish

}

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

9Process environments

uniprogramming: one process at a time

"cooperative timesharing"

mostly PCs, vintage OSes

easy for OS, usually hard for user

violates isolation

when should process yield?

uniprogramming != uniprocessing

multiprogramming: > 1 process at a time

time-sharing

CTSS, Multics, Unix, VMS, NT, …

multiprogramming != multiprocessing

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

10The Grand Illusion

Each thread has the illusion of its own CPU, even on a uniprocessor machine.

How does this work?

Two key pieces:

thread control block (Pintos: thread class)

one per thread, holds execution state

dispatching loop: while (1)
interrupt running thread
save state
get next thread
load state, jump to it

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

11Multiprogramming problems

Tracking state…

PCB (process control block)

thread state + OS state

N processes… who to run?

Need to schedule whenever we have one resource and many "things" that
want to use it.

Protection…

Prevent processes from getting at another's state

Fairness: make sure each process gets to run

No protection --> system crashes are about O(# processes)

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

12Process states

Processes in three states:

running: executing now

ready: waiting for CPU

blocked: waiting for another event

Which ready process do we pick?

0 ready processes: run idle loop

1 ready process: only one choice!

> 1 ready process: what to do???

running
ready

blocked

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

13Picking a process to run

Scan process table for first runnable?

expensive, weird priorities (small PIDs are better??)

divide into runnable and blocked processes

FIFO?

put threads on back of list, pull them off front

Pintos does this (thread.c)

what about priorities?

Priority?

give some threads a better shot at the CPU

problem?

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

14How to get control?

traps: events generated by the current process

system calls

errors (illegal instructions)

page faults

interrupts: events external to the process

I/O interrupts

timer interrupt (periodic, fairly frequent)

Process perspective

explicit: process yields processor to another

implicit: causes an expensive blocking event, gets switched

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

15How to switch contexts?

Very machine dependent… must save

general-purpose and FP registers, any co-processor state, …

Tricky

OS code must save state without changing any state.

How to run w/o touching any registers?

Some CISC machines have single instructions to save all registers on
the stack

RISC machines reserve some registers for the kernel, or have a way to
carefully save one and then continue

How expensive? direct cost of saving + indirect cost of flushing user caches

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

16Fundamentals of process switching

Execution is THE vital issue.

procedure calls, threads, processes are just variations

What's the minimum to execute code?

position pointer to current instruction

+

state captures result of computation

What's the minimum to switch from one to another?

save old instruction pointer and load new one

What about state?

if state is per-thread, have to save and restore

in practice, can save everything, nothing or something in between

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

17Switching between procedures

Procedure call

save active caller registers

call Foo

restore caller registers

How is state saved?

saved proactively? saved lazily? not saved?

saves callee registers
... do stuff ...
restores callee registers
jumps back to return address

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

18Aside: threads vs procedures

Threads may resume out of order

cannot use LIFO stack to save state

general solution: duplicate stack

Threads switch less often

don't partition registers (why??)

Threads involuntarily interrupted

synchronous: proc call can use compiler to save state

asynchronous: thread switch code saves all registers

More than one thread can run

scheduling: what to overlay on CPU next?

proc call scheduling obvious: run called procedure

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

19Synchronous thread switching

Switch threads: #(Arguments: CurrentThread, NextThread)

Save caller's register state.

Save current stack pointer to old thread's stack.

Restore stack pointer for new thread's stack.

Restore caller's register state.

Return

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

20Asynchronous thread switching

Switch threads: #(Arguments: CurrentThread, NextThread)

Save current state:

triggered by interrupt

Save registers

Set up kernel environment

Call interrupt handler

Restore new state:

Restore registers

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

21Process vs threads

Different address space

switch page table, etc.

problems: how to share data? how to communicate?

Different processes have different privileges

switch OS's idea of who's running

Protection

have to save state in safe place

need support to forcibly revoke processor, prevent imposters

Different than procedures?

OS, not compiler manages state saving

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

22Real OS permutations

One or many address spaces?

One or many threads per address space?

VMS, Mach, OS2
NT, Solaris, OS X,

Linux

embedded systems
Pilot

many

traditional Unix
MS/DOS

Macintosh
1

many1
address spaces:

threads per space

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

23Generic abstraction template

abstraction: how OS abstracts underlying resource

virtualization: how OS makes small number of resources seem like an infinite
number

partitioning: how OS divides resources

protection: how OS prevents bad people from using pieces they shouldn't

sharing: how different instances are shared

speed: how OS reduces management overhead

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Processes

Operating Systems

24How the CPU is abstracted

CPU state represented as a process

Virtualization: processes interleaved transparently

Partitioning: CPU shared across time

Protection: pigs are forcibly interrupted, process's state saved in OS space,
identities are protected

Sharing: yield your CPU time slice to another process

Speed: large scheduling quanta, minimize state needed to switch, share
common state (code), duplicate state lazily

