
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

1Multiple Processes in One World

Safe? Not automatically.

Suppose one process is modifying shared state information.

Can another process safely modify at the same time?

Can another process safely read at the same time?

Are there inherently safe sharing scenarios?

Errors may be irreproducible.

Consider a shared counter…

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

2So why share?

Cost: buy limited # of resource units and share among many processes

Information: need results from other processes

promotes speed; parallel threads working on same state

promotes modularity; one process may serve as front-end for others

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

3Race Conditions

race condition: timing-dependent error involving shared state.

occurrence depends on vagaries of scheduling

must make sure that ALL possible schedules are safe

number of possible schedules may be HUGE

if (n == stack_size) // A

return FULL; // B

stack[n] = v; // C

n = n + 1; // D

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

4Race Conditions

// Thread a

i = 0;

while (i < 10)

i = i + 1;

print "A won!";

// Thread b

i = 0;

while (i > -10)

i = i - 1;

print "B won!";

Note: variable i is shared

Who wins?

Must one win?

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

5Responses

Do nothing…

shared counter may not require a precise result

but often precision does matter

Avoid sharing…

whenever possible, duplicate or partition state

can't always avoid sharing

What's the root of the problem?

bad interleaving of processes…

… so prevent them from occurring

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

6Atomicity

atomic unit: instruction sequence guaranteed to execute indivisibly

critical section: instruction sequence in which shared state must be accessed
atomically

If two threads attempt to execute the same atomic unit at the same time, one
thread will execute the whole sequence before the other thread begins it.

But how do we make multiple instructions seem like atomic ones?

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

7Atomicity on a Uniprocessor

The only requirement is that when a thread is in a critical section it will not be
preempted.

OS traditional approach is that threads will disable/enable interrupts.
old = intr_disable();

hits = hits + 1;

intr_set_level(old);

Dangerous… programmer error can disrupt entire system, not merely lead to
incorrect results for the threads that are sharing state.

Could have the scheduler check the thread's PC versus a table of critical section
addresses… requires compiler support and extra work.

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

8Atomicity on a Multiprocessor

Simply avoiding certain preemptions is no longer sufficient…

Hardware support?

e.g, atomic increment operation

not a general solution

can be used to create atomic primitives that do provide a solution

General solution:

when a thread enters a critical section, it sets a lock

no other thread can enter the critical section without holding the lock

when a thread leaves a critical section, it unsets the lock

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

9Locks

A lock is shared amongst the relevant threads

acquire(lock): acquire exclusive access to lock;

if lock is already acquired, wait for it

release(lock) release exclusive access to lock

Pattern is obvious: bracket critical section in lock/unlock calls

This type of lock is often called a mutex

Locks let us create big atomic units (critical sections) from small ones (locks)

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

10Lock Rules

Simple rules for easy concurrency:

every shared variable is protected by a lock

every thread must hold the relevant lock before it touches the shared vble

Must have a guarantee that two threads cannot hold the same lock at the same
time.

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

11Implementing Locks

A simple attempt:

acquire(Lock& L) {

while (L == 0) continue;

L = 0;

}

release(Lock& L) {

L = 1;

}

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

12Second Attempt

Focus on the uniprocessor issue for now:

acquire(Lock& L) {

disable_preemption();

while (L == 0) continue;

L = 0;

enable_preemption();

}

release(Lock& L) {

L = 1;

}

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

13Third Attempt

Focus on the uniprocessor issue for now:

acquire(Lock& L) {

acquired = 0;

while (!acquired) {

disable_preemption();

if (L == 1) {

acquired = 1;

L = 0;

}

enable_preemption();

}

}

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

14Multiprocessing Locks

Turning off other processors is too costly… or impossible.

Atomic primitives can be used to build locks

test and set instruction

atomic swap (atomically swap values in register and memory)

acquire(Lock& L) {

acquired = 0;

while (!acquired)

aswap(acquired, L);

}

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

15Spin or block?

Blocking isn't free. Best choice depends on how long thread must wait.

One strategy:

spin for length of block cost

if lock not available, then block

Performance is within a factor of 2 of optimal.

Computer Science Dept Va Tech September 2006 ©2006 McQuain & Ribbens

Concurrency

Operating Systems

16General Observations

There are many other workable solutions

All share three common safety requirements:

mutual exclusion

progress (deadlock free)

bounded (starvation free)

Some "nice" properties:

fair (don't make some wait longer than others)

efficient (don't waste resources while waiting)

simple

