
1

CS 3204
Operating Systems

Godmar Back

Lecture 9

9/19/2006CS 3204 Spring 2006 2

Announcements

• Project 1 due Monday Sep 25, 11:59pm
– Only 6 days left
– Should be busy debugging priority donation &

the advanced scheduler
• Project 0 scores are forthcoming
• Reading assignments:

– Read carefully Chapter 6.1-6.4

Concurrency & Synchronization

9/19/2006CS 3204 Spring 2006 4

Recap: Critical Section Problem
• Defined Critical Section Problem:

– mutual exclusion, progress, bounded waiting
• Approaches to CS on uniprocessor:

– Disabling IRQs – use this to protect against concurrent access
by IRQ handler

– Locks – use to protect against concurrent access by other
threads

• Involves state change of thread if contended
• Requires a “disable_preemption” primitive (such as disable irq)

• Using Locks:
– correctness first – see “Rules for Easy Locking”, then

performance
• Today:

– More on using locks
– Locks in Java/C#
– Multiprocessor implementations of locks

9/19/2006CS 3204 Spring 2006 5

Rules for Easy Locking
• Every shared variable must be protected by a lock

– Acquire lock before touching (reading or writing) variable
– Release when done, on all paths
– One lock may protect more than one variable, but should not

protect too many
– The lock protects the variable, not a region of code or a function!

All accesses to variable must be protected by same lock no
matter where they occur.

– Encapsulation helps: e.g., use one lock for all fields in an object
• If manipulating multiple variables, acquire locks

protecting each variable
– always in same order (doesn’t matter which)
– release in opposite order
– don’t mix acquires & release (two-phase locking)

9/19/2006CS 3204 Spring 2006 6

Rules for Easy Locking
• Every shared variable must be protected by a lock

– Acquire lock before touching (reading or writing) variable
– Release when done, on all paths
– One lock may protect more than one variable, but should not

protect too many
– The lock protects the variable, not a region of code or a function!

All accesses to variable must be protected by same lock no
matter where they occur.

– Encapsulation helps: e.g., use one lock for all fields in an object
• If manipulating multiple variables, acquire locks

protecting each variable
– always in same order (doesn’t matter which)
– release in opposite order
– don’t mix acquires & release (two-phase locking)

Aside: LockSet algorithm.
To determine race conditions in a program, use

following idea:
For each variable v, set lock set (v) := ALL.

Whenever a variable is accessed by a thread,
compute:

lock set (v) := lock set (v) ∩
{ set of locks that is held by the thread at access }

Aside: LockSet algorithm.
To determine race conditions in a program, use

following idea:
For each variable v, set lock set (v) := ALL.

Whenever a variable is accessed by a thread,
compute:

lock set (v) := lock set (v) ∩
{ set of locks that is held by the thread at access }

2

9/19/2006CS 3204 Spring 2006 7

Coarse- vs fine-grained Locking
• Coarse-grained

– “a single lock protects a set
of resources”

• Unnecessary
serialization: other
threads must wait to
access any resource
even while unrelated
ones are accessed
– This means processors on

which those threads could
run will idle, leading to
decrease in throughput

• Fine-grained
– “each resource is protected

by its own lock”
• More potential for

mistakes & deadlocks
– Requires locking order

• Potential for unnecessary
context switches
– Can limit scalability for

highly contended locks
• May not provide benefit

on uniprocessors

9/19/2006CS 3204 Spring 2006 8

Locks in Java/C#

• Every object can function as lock – no need to declare &
initialize them!

• synchronized (locked in C#) brackets code in
lock/unlock pairs – either entire method or block {}

• finally clause ensures unlock() is always called

synchronized void method() {

code;

synchronized (obj) {

more code;

}

even more code;

}

synchronized void method() {

code;

synchronized (obj) {

more code;

}

even more code;

}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
even more code;

} finally { unlock(this); }
}

void method() {
try {

lock(this);

code;
try {

lock(obj);
more code;

} finally { unlock(obj); }
even more code;

} finally { unlock(this); }
}

is
transformed

to

Locks “this”

9/19/2006CS 3204 Spring 2006 9

Subtle Race Condition

• Race condition even though individual accesses to “sb” are
synchronized (protected by a lock)
– But “len” may no longer be equal to “sb.length” in call to getChars()

• This means simply slapping lock()/unlock() around every access to a
shared variable does not thread-safe code make

• Found by Flanagan/Freund

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len;
if (newcount > value.length)

expandCapacity(newcount);
sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

}

public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length(); // note: StringBuffer.length() is synchronized
int newcount = count + len;
if (newcount > value.length)

expandCapacity(newcount);
sb.getChars(0, len, value, count); // StringBuffer.getChars() is synchronized
count = newcount;
return this;

}

Not holding lock on ‘sb’ – other
Thread may change its length

9/19/2006CS 3204 Spring 2006 10

Multiprocessor Locks
• Problem: stopping threads running on other

processors is
– too expensive (requires interprocessor irq)
– also would violate protection (locking = unprivileged

op, stopping = privileged op) so couldn’t do it in
unprivileged code

• Instead: use atomic instructions provided by
hardware
– These are all variations of a “read-and-modify” theme
– test-and-set, atomic-swap, compare-and-exchange,

fetch-and-add
• Locks are then built on top of these

9/19/2006CS 3204 Spring 2006 11

Atomic Swap

// In C, an atomic swap instruction would look like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

// In C, an atomic swap instruction would look like this
void
atomic_swap(int *memory1, int *memory2)
{

[disable interrupts in CPU;
lock memory bus for other processors]

int tmp = *memory1;
*memory1 = *memory2;
*memory2 = tmp;
[unlock memory bus; reenable interrupts]

}

9/19/2006CS 3204 Spring 2006 12

Spinlocks
lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

• Thread spins until it acquires lock
– Q1: when should it block instead?
– Q2: what if spin lock holder is preempted?

3

9/19/2006CS 3204 Spring 2006 13

Spinning vs Blocking

• Blocking has a cost
– Shouldn’t block if lock becomes available in

less time than it takes to block
• Strategy: spin for time it would take to

block
– Even in worst case, total cost for lock_acquire

is less than 2*block time

9/19/2006CS 3204 Spring 2006 14

Spinlocks & Disabling Preemption
• Consider:

– thread 1 takes spinlock
– thread 1 is preempted
– thread 2 with higher priority runs
– thread 2 tries to take spinlock, finds it taken
– thread 2 spins forever → deadlock!

• Thus in practice, we usually combine spinlocks with
disabling preemption on the same processor
– E.g., spin_lock_irqsave() in Linux

• UP kernel: reduces to disable_preemption
• SMP kernel: disable_preemption + spinlock

• Spinlocks are used when holding resources for small
periods of time (same rule as for when it’s ok to disable
irqs)

9/19/2006CS 3204 Spring 2006 15

Spinlocks (Optimized)
lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_acquire(struct lock *l)
{

int lockstate = LOCKED;
while (lockstate == LOCKED) {

while (l->state == LOCKED)
continue;

atomic_swap(&lockstate,
&l->state);

}
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

lock_release(struct lock *l)
{

l->state = UNLOCKED;
}

• Idea: only try “expensive” atomic_swap
instruction if you’ve seen lock unlocked

9/19/2006CS 3204 Spring 2006 16

Locks: More Practical Issues
• How expensive are locks by themselves – aside from the

performance impact of the serialization they can cause?
• Two considerations:

– Cost to acquire uncontended lock
• UP Kernel: disable/enable irq + memory access
• In most other scenarios: needs atomic instruction (relatively

expensive in terms of processor cycles, especially if executed often)
– Cost to acquire contended lock

• Spinlock: blocks current CPU entirely (if no blocking is employed)
• Regular lock: cost at least two context switches, plus associated

management overhead
• Conclusions

– When implementing locks, optimizing uncontended case is
important

– “Hot locks” can sack performance easily

9/19/2006CS 3204 Spring 2006 17

Locks: Ownership & Recursion
• Locks typically (not always) have explicit notion

of ownership
– Only lock holder is allowed to unlock
– See Pintos lock_held_by_current_thread()

• What if lock holder tries to acquire locks it
already holds?
– Nonrecursive locks: deadlock!
– Recursive locks:

• inc counter
• dec counter on lock_release
• release when zero

