CS 3204
Operating Systems

Lecture 8
Godmar Back

Virgini

Announcements

* Project 1 due Monday Sep 25, 11:59pm
—Only 11 days left
* Announcements:
— CS Open House this afternoon 1pm-4pm
* Free Food
— CS Career Reception
* Reading assignments:
— Read carefully Chapter 6.1-6.4

Virginia CS 3204 Spring 2006 9/18/2006 2

mTec_h

mTec_h

Project 1 Suggested Timeline

» Today Sep 14:
— Should pass all alarm & basic priority tests

* Priority Inheritance & Advanced Scheduler
take the most time, start them in parallel —
will take the most time to implement &
debug
— Read forum for fixed-point implementation
— Read forum for MLFQS ambiguities

* Due date Sep 25

Virginia CS 3204 Spring 2006 9/18/2006 3

mTﬁ;h

Concurrency & Synchronization

_vug] nia

% Source: inter.scoutnet.org

* Invented by Edsger Dijkstra in 1965s
» Counter S, initialized to some value, with two operations:
— P(S) or “down” or “wait” — if counter greater than zero,
decrement. Else wait until greater than zero, then decrement
— V(S) or “up” or “signal” — increment counter, wake up any
threads stuck in P.
* Semaphores don’t go negative:
— #V + InitialValue - #P >= 0
» Note: direct access to counter value after initialization is
not allowed
« Counting vs Binary Semaphores
— Binary: counter can only be 0 or 1
* Simple to implement, yet powerful
— Can be used for many synchronization problems

Semaphores

Virginia CS 3204 Spring 2006 9/18/2006 5

mTec_h

mTﬁ;h

Semaphores as Locks

semaphore S(1); // allows initial down

« Semaphores can be

used to build locks e e -
— Pintos does just that {1 11ty to decrement, wait

N sema_down(S);
¢ Must initialize

semaphore with 1 to
allow one thread to
enter critical section

lock_release()
{ /l'increment (wake up waiters if any)
sema_up(S);

» Easily generalized to allow at most N simultaneous
threads: multiplex pattern (i.e., a resource can be
accessed by at most N threads)

Virginia CS 3204 Spring 2006 9/18/2006 6

mTec_h

Critical Sections (cont’d)

« Critical Section Problem also known as mutual exclusion
problem
» Only one thread can be inside critical section; others
attempting to enter CS must wait until thread that’s
inside CS leaves it.
* Note: different from “all-or-nothing” meaning atomic has
in database theory & practice
— Does not necessarily imply that thread executes section without
interruption, or even that thread completes section — just that
other threads can't enter it while one thread is inside it
« Solutions can be entirely software, or entirely hardware
— Usually combined
— Different solutions for uniprocessor vs multiprocessor scenarios

v“gmm‘a.r och CS 3204 Spring 2006 9/18/2006 7

Implementing CS by avoiding
context switches: Variation (1)

« Variation of

Disabling Interrupts

« All asynchronous intr_level old = intr_disable();
context switches start |/* modify shared data */
. intr_set_level(old);
with interrupts
— So disable interrupts
to avoid them!

void intr_set_level(intr_level to)

if (to == INTR_ON)
intr_enable();
else
intr_disable();

}

v“gmm‘a.r l CS 3204 Spring 2006 9/18/2006 8

Implementing CS by avoiding
context switches: Variation (2)

“disabling-interrupts”

technique

— That doesn’t actually
disable interrupts

— If IRQ happens, ignore
it

¢ Assumes writes to
“taking_interrupts” are
atomic and sequential
wrt reads

_vug] nia

taking_interrupts = false;
/* modify shared data */
taking_interrupts = true;

intr_entry()

if (Itaking_interrupts)
iret
intr_handle();

¢ Code on previous slide
could lose interrupts
— Remember pending
interrupts and check when
leaving critical section

taking_interrupts = false;
/* modify shared data */
if (irg_pending)
intr_handle();
taking_interrupts = true;

WT] CS 3204 Spring 2006 9/18/2006 9

« Instead of setting flag,
have irq handler
examine PC where
thread was
interrupted

* See Bershad '92:
Fast Mutual Exclusion
on Uniprocessors

Virgini

Avoiding context switches:
Variation (3)

critical_section_start:
/* modify shared data */
critical_section_end:

intr_entry()
if (PC in (critical_section_start,
critical_end_end)) {
iret

intr_handle();

CS 3204 Spring 2006 9/18/2006 11
mTec_h pring

intr_entry()
« This technique can be

used with Unix signal
handlers (which are like
“interrupts” sent to a Unix

if (ltaking_interrupts) {
irg_pending = true;
iret

}
process) intr_handle();
— but tricky to get right
“@ﬂmﬂT wch CS 3204 Spring 2006 9/18/2006 10

Disabling Interrupts: Summary

« (this applies to all variations)

« Sledgehammer solution

« Infinite loop means machine locks up

« Use this to protect data structures from concurrent
access by interrupt handlers

— Keep sections of code where irgs are disabled minimal (nothing
else can happen until irgs are reenabled — latency penalty!)

— If you block (give up CPU) mutual exclusion with other threads is
not guaranteed

« Any function that transitively calls thread_block() may block
« Want something more fine-grained

— Key insight: don’t exclude everybody else, only those contending
for the same critical section

v“gmm‘a.r och CS 3204 Spring 2006 9/18/2006 12

Critical Section Problem

» A solution for the CS Problem must
1) Provide mutual exclusion: at most one thread can be inside CS
2) Guarantee Progress: (no deadlock)
« if more than one threads attempt to enter, one will succeed
« ability to enter should not depend on activity of other threads not
currently in CS
3) Bounded Waiting: (no starvation)
« Athread attempting to enter critical section eventually will
?;;suming no thread spends unbounded amount of time inside
¢ A solution for CS problem should be
— Fair (make sure waiting times are balanced)
— Efficient (not waste resources)
— Simple
=Virginia CS 3204 Spring 2006 9/18/2006 13

W'I'ed]

Locks

» Thread that enters CS locks it
— Others can't get in and have to wait
» Thread unlocks CS when leaving it
— Lets in next thread
— which one?
* FIFO guarantees bounded waiting

lock
« Highest priority in Proj1
» Can view Lock as an abstract data
type
— Provides (at least) init, acquire, release
unlock
===Virginia CS 3204 Spring 2006 9/18/2006 14

W'I'ed]

Implementing Locks

 Let’s discuss how to implement locks to solve
CS problem

 Later talk about semaphores
— Same ideas apply — get to see two views of the same

issues

« Different solutions exist to implement locks for
uniprocessor and multiprocessors

» Will talk about how to implement locks for
uniprocessors first — next slides all assume
uniprocessor

Virginia CS 3204 Spring 2006 9/18/2006 15

W'I'ed]

Implementing Locks, Take 1

lock_acquire(struct lock *I) lock_release(struct lock *I)

while (I->state == LOCKED) |->state = UNLOCKED;
continue; }

|->state = LOCKED;

* Does this work?
No — does not guarantee mutual exclusion property — more than one

thread may see “state” in UNLOCKED state and break out of while
loop. This implementation has itself a race condition.

Virginia CS 3204 Spring 2006 9/18/2006 16

W'I'ed]

Implementing Locks, Take 2

lock_acquire(struct lock *I) lock_release(struct lock *I)

disable_preemption(); |->state = UNLOCKED;

while (I->state == LOCKED)
continue;

I->state = LOCKED;

enable_preemption();

}
* Does this work?

No — does not guarantee progress property. If one thread enters the
while loop, no other thread will ever be scheduled since preemption
is disabled — in particular, no thread that would call lock_release will
ever be scheduled.

Virginia CS 3204 Spring 2006 9/18/2006 17

W'I'ed]

Implementing Locks, Take 3

lock_acquire(struct lock *I) lock_release(struct lock *I)
while (true) { |->state = UNLOCKED;
disable_preemption(); }
if (I->state == UNLOCKED) {
|->state = LOCKED;
enable_preemption();
return; Yes, this works — but is grossly
} inefficient. A thread that
enable_preemption(); encounters
the lock in the LOCKED state
} will busy wait until it is

) unlocked,
» Does this work? needlessly using up CPU time.

Virginia CS 3204 Spring 2006 9/18/2006 18

W'I'ed]

Implementing Locks, Take 4

lock_acquire(struct lock *I) lock_release(struct lock *I)

disable_preemption(); disable_preemption();

while (I->state == LOCKED) { |->state = UNLOCKED;
list_push_back(l->waiters, if (list_size(l->waiters) > 0)

¤t->elem); thread_unblock(

thread_block(current); list_entry(list_pop_front(l->waiters),

} struct thread, elem));

|->state = LOCKED; enable_preemption();

enable_preemption(); }

Correct & uses proper blocking.
Note that thread doing the unlock performs the work of unblocking
the first waiting thread.

V“Emla.l.ed] CS 3204 Spring 2006 9/18/2006 19

How many locks should | use?

» Could use one lock for all shared variables
— Disadvantage: if a thread holding the lock blocks, no
other thread can access any shared variable, even
unrelated ones
— Sometimes used when retrofitting non-threaded code
into threaded framework
— Examples:
« “BKL" Big Kernel Lock in Linux
« fslock in Pintos Project 2
« |deally, want fine-grained locking

— One lock only protects one (or a small set of)
variables — how to pick that set?

V“Emla.red] CS 3204 Spring 2006 9/18/2006 21

Using Locks

» Associate each shared variable with lock L

— “lock L protects that variable”

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock listlock; /* Protects usedlist & freelist */

void *mem_alloc(...)

block *b;

lock_acquire(&listlock);

b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);

void mem_free(block *b)

lock_acquire(&listlock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&listlock);

lock_release(&listlock); }
return b->data;
V“Emla.l.ed] CS 3204 Spring 2006 9/18/2006 20

Multiple locks, the wrong way

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock alloclock; /* Protects allocations */
static struct lock freelock; /* Protects deallocations */

{

void *mem_alloc(...)

block *b;
lock_acquire(&alloclock);

b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&alloclock);

void mem_free(block *b)

{
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);

}

return b->data;

Multiple locks, 2n try

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

void *mem_alloc(...) void mem_free(block *b)
block *b; lock_acquire(&usedlock);
lock_acquire(&freelock); list_remove(&b->elem);
b = alloc_block_from_freelist(); lock_acquire(&freelock);
lock_acquire(&usedlock); coalesce_into_freelist(&freelist, b);
insert_into_usedlist(&usedlist, b); lock_release(&usedlock);
lock_release(&freelock); lock_release(&freelock);
lock_release(&usedlock); ['Ajso wrong: deadlock!
return b->data; Always acquire multiple locks in same order -

} Or don't hold them simultaneously

V“Emla.l.ed] CS 3204 Spring 2006 9/18/2006 23

oy Tech

Wrong: locks protect data structures, not
code blocks! Allocating thread & deallocating
thread could collide

CS 3204 Spring 2006 9/18/2006 22

Multiple locks, correct (1)

static struct list usedlist; /* List of used blocks */
static struct list freelist; /* List of free blocks */

static struct lock usedlock; /* Protects usedlist */
static struct lock freelock; /* Protects freelist */

}

void *mem_alloc(...)

block *b;
lock_acquire(&usedlock);
lock_acquire(&freelock);

b = alloc_block_from_freelist();
insert_into_usedlist(&usedlist, b);
lock_release(&freelock);

void mem_free(block *b)

lock_acquire(&usedlock);
lock_acquire(&freelock);
list_remove(&b->elem);
coalesce_into_freelist(&freelist, b);
lock_release(&freelock);
lock_release(&usedlock);

lock_release(&usedlock);
return b->data;

e Tech

Correct, but inefficient!
Locks are always held simultaneously,
one lock would suffice

CS 3204 Spring 2006 9/18/2006 24

Multiple locks, correct (2)

static struct I{ COrrect, but not necessarily better!
static struct I{ On uniprocessor:
i No throughput from fine-grained locking, since no
static struct I{ locking inside critical sections — but pay twice the price
static struct I4 compared to one-lock solution
void *mem_alloc(...) On_multiprot_:essor: .
= Gain from being able to manipulate free & used
{ block *b: lists in parallel, but increased risk of contended locks

lock_acquire(&freelock);

b = alloc_block_from_freelist();
lock_release(&freelock); list_remove(&b->elem);
lock_acquire(&usedlock); lock_release(&usedlock);
insert_into_usedlist(&usedlist, b); lock_acquire(&freelock);
lock_release(&usedlock); coalesce_into_freelist(&freelist, b);
return b->data; lock_release(&freelock);

lock_acquire(&usedlock);

}

V“Emmla.red] CS 3204 Spring 2006 9/18/2006 25

Conclusion

» Choosing which lock should protect which
shared variable(s) is not easy — must weigh:

— Whether all variables are always accessed together
(use one lock if so)

— Whether code inside critical section can block (if not,
no throughput gain from fine-grained locking on
uniprocessor)

— Whether there is a consistency requirement if multiple
variables are accessed in related sequence (must
hold single lock if so)

— Cost of multiple calls to lock/unlock (increasing
parallelism advantages may be offset by those costs)

Virgini

CS 3204 Spring 2006 9/18/2006 26
() Zech P

Rules for easy locking

» Every shared variable must be protected by a
lock

— Acquire lock before touching (reading or writing)
variable

— Release when done, on all paths

— One lock may protect more than one variable, but not
too many

+ If manipulating multiple variables, acquire locks
protecting each

— Acquire locks always in same order (doesn’t matter
which order, but must be same)

— Release in opposite order
— Don’t mix acquires & release (two-phase locking)

V“Emmla.red] CS 3204 Spring 2006 9/18/2006 27

