
1

CS 3204
Operating Systems

Godmar Back

Lecture 6

9/7/2006CS 3204 Spring 2006 2

Announcements
• Project 1 due Monday Sep 25, 11:59pm
• Project 1 help session slides online:
• Group formation:

– See http://courses.cs.vt.edu/~cs3204/fall2006/gback/groups.txt for
current list

– Will only assign as a last resort.
• Announcements:

– Microsoft “Meet The Company” tonight Sep 7, 7-9pm Pamplin 2030
– Unix Crash Course by VTLUUG:

• Monday Sep 11, 7-9pm Squires 236
• Tuesday Sep 12, 6-8:30pm Squires 116

• Reading assignments:
– Chapters 1, 2 – skim. Read carefully 1.5.
– Read carefully Chapter 3.1-3.3
– Read carefully Chapter 6.1-6.4

9/7/2006CS 3204 Spring 2006 3

Project 1 Suggested Timeline
• Today Sep 7:

– Have read project documentation, set up CVS, built
and run your first kernel, designed your data
structures for alarm clock

• Alarm clock by Sep 9
• Basic priority by Sep 13
• Priority Inheritance & Advanced Scheduler take

the most time, start them in parallel – will take
the most time to implement & debug

• Due date Sep 25

Processes & Threads

Continued

9/7/2006CS 3204 Spring 2006 5

thread_yield()
• Current thread (“RUNNING”) is moved to

READY state, added to READY list.
• Then scheduler is invoked. Picks a new

READY thread from READY list.
• Case a): there’s only 1 READY thread.

Thread is rescheduled right away
• Case b): there are other READY thread(s)

– b.1) another thread has higher priority – it is
scheduled

– b.2) another thread has same priority – it is
scheduled provided the previously running
thread was inserted in tail of ready list.

• “thread_yield()” is a call you can use
whenever you identify a need to preempt
current thread.

• Exception: inside an interrupt handler, use
“intr_yield_on_return()” instead

RUNNINGRUNNING

READYREADYBLOCKEDBLOCKED

Process
must wait
for event

Event
arrived

Scheduler
picks
process

Process
preempted

9/7/2006CS 3204 Spring 2006 6

Windows XP
• Priority scheduler

uses 32 priorities
• Scheduling class

determines range in
which priority are
adjusted

• Source: Microsoft®
Windows® Internals,
Fourth Edition:
Microsoft Windows
Server™

2

9/7/2006CS 3204 Spring 2006 7

Process Creation

• Two common paradigms:
– Cloning vs. spawning

• Cloning: (Unix)
– “fork()” clones current process
– child process then loads new program

• Spawning: (Windows, Pintos)
– “exec()” spawns a new process with new program

• Difference is whether creation of new process
also involves a change in program

9/7/2006CS 3204 Spring 2006 8

fork() #include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int ac, char *av[])
{

pid_t child = fork();
if (child < 0)

perror(“fork”), exit(-1);
if (child != 0) {

printf ("I'm the parent %d, my child is %d\n",
getpid(), child);

wait(NULL); /* wait for child (“join”) */
} else {

printf ("I'm the child %d, my parent is %d\n",
getpid(), getppid());

execl("/bin/echo", "echo", "Hello, World", NULL);
}

}

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int ac, char *av[])
{

pid_t child = fork();
if (child < 0)

perror(“fork”), exit(-1);
if (child != 0) {

printf ("I'm the parent %d, my child is %d\n",
getpid(), child);

wait(NULL); /* wait for child (“join”) */
} else {

printf ("I'm the child %d, my parent is %d\n",
getpid(), getppid());

execl("/bin/echo", "echo", "Hello, World", NULL);
}

}

9/7/2006CS 3204 Spring 2006 9

Fork/Exec Model
• Fork():

– Clone most state of parent, including memory
– Inherit some state, e.g. file descriptors
– Important optimization: copy-on-write

• Some state is copied lazily
– Keeps program, changes process

• Exec():
– Overlays current process with new executable
– Keeps process, changes program

• Advantage: simple, clean
• Disadvantage: does not optimize common case (fork

followed by exec of child)

9/7/2006CS 3204 Spring 2006 10

The fork()/join() paradigm
• After fork(), parent & child

execute in parallel
• Purpose:

– Launch activity that can be done in
parallel & wait for its completion

– Or simply: launch another program
and wait for its completion (shell
does that)

• Pintos:
– Kernel threads: thread_create (no

thread_join)
– exec(), you’ll do wait() in Project 2

Parent:
fork()

Parent:
fork()

Parent:
join()

Parent:
join()

Parent
process
executes

Parent
process
executes

Child
process
executes

Child
process
executes

Child
process

exits

Child
process

exits

OS notifies

9/7/2006CS 3204 Spring 2006 11

CreateProcess()
// Win32
BOOL CreateProcess(

LPCTSTR lpApplicationName,
LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation);

• See also system(3) on Unix systems
• Pintos exec() is CreateProcess(), not like Unix’s exec()

9/7/2006CS 3204 Spring 2006 12

Thread Creation APIs
• How are threads embedded in a language?
• POSIX Threads Standard (in C)

– pthread_create(), pthread_join()
– Uses function pointer

• Java/C#
– Thread.start(), Thread.join()
– Java: Using “Runnable” instance
– C#: Uses “ThreadStart” delegate

• C++
– No standard has emerged as of yet
– see ISO C++ Strategic Plan for Multithreading

3

9/7/2006CS 3204 Spring 2006 13

Example pthread_create/join
static void * test_single(void *arg)
{

// this function is executed by each thread, in parallel
}

/* Test the memory allocator with NTHREADS concurrent threads. */
pthread_t threads[NTHREADS];
int i;
for (i = 0; i < NTHREADS; i++)
if (pthread_create(threads + i, (const pthread_attr_t*)NULL,

test_single, (void*)i) == -1)
{ printf("error creating pthread\n"); exit(-1); }

/* Wait for threads to finish. */
for (i = 0; i < NTHREADS; i++)
pthread_join(threads[i], NULL);

Use Default Attributes –
could set stack
addr/size here

2nd arg could receive
exit status of thread

9/7/2006CS 3204 Spring 2006 14

Java Threads Example
public class JavaThreads {

public static void main(String []av) throws Exception {
Thread [] t = new Thread[5];
for (int i = 0; i < t.length; i++) {

final int tnum = i;
Runnable runnable = new Runnable() {

public void run() {
System.out.println("Thread #"+tnum);

}
};
t[i] = new Thread(runnable);
t[i].start();

}
for (int i = 0; i < t.length; i++)

t[i].join();
System.out.println("all done");

}
}

Threads implements Runnable
– could have subclassed
Thread & overridden run()

Thread.join() can throw
InterruptedException – can be

used to interrupt thread waiting to
join via Thread.interrupt

9/7/2006CS 3204 Spring 2006 15

Why is taking C++ so long?
• Java didn’t – and got it wrong.

– Took years to fix
• What’s the problem?

– Compiler must know about concurrency to not reorder
operations past implicit synchronization points

– See also Pintos Reference Guide A.3.5 Memory Barriers
– See Boehm [PLDI 2005]: Threads cannot be implemented as a

library

lock (&l);
flag = true;
unlock (&l);

lock (&l);
unlock (&l);
flag = true;

Concurrency & Synchronization

9/7/2006CS 3204 Spring 2006 17

pthread_mutex example
/* Define a mutex and initialize it. */
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

static int counter = 0; /* A global variable to protect. */

/* Function executed by each thread. */
static void *
increment(void *_)
{

int i;
for (i = 0; i < 1000000; i++) {

pthread_mutex_lock(&lock);
counter++;
pthread_mutex_unlock(&lock);

}
}

movl counter, %eax
incl %eax
movl %eax, counter

9/7/2006CS 3204 Spring 2006 18

A Race Condition

Thread 1
movl counter, %eax

incl %eax
movl %eax, counter

Thread 2

movl counter,%eax
incl %eax

movl %eax,counter

IRQ
OS decides to
context switch

%eax – Thread 1’s copy
%eax – Thread 2’s copy
counter – global variable, shared

IRQ

tim
e

IRQ

0
0

1
1

1

1
Final result: counter is 1, should be 2
Assume counter == 0 initially

4

9/7/2006CS 3204 Spring 2006 19

Race Conditions
• Definition: two or more threads read and write a shared

variable, and final result depends on the order of the
execution of those threads

• Usually timing-dependent and intermittent
– Hard to debug

• Not a race condition if all execution orderings lead to
same result
– Chances are high that you misjudge this

• How to deal with race conditions:
– Ignore (!?)

• Can be ok if final result does not need to be accurate
• Never an option in CS 3204

– Don’t share: duplicate or partition state
– Avoid “bad interleavings” that can lead to wrong result

