
1

CS 3204
Operating Systems

Godmar Back

Lecture 26

11/30/2006CS 3204 Fall 2006 2

Announcements

• Project 4 due Dec 6, 11:59pm
• Reading assignments:

– Chapters 14 & 15
• Sample Final Exam posted

Protection & Security

11/30/2006CS 3204 Fall 2006 4

Security Requirements & Threats

• Requirement
– Confidentiality
– Integrity
– Availability
– Authenticity

• Threat
– Interception
– Modification
– Interruption
– Fabrication

The goal of a protection system is to ensure these 
requirements and protect against accidental or 
intentional misuse

11/30/2006CS 3204 Fall 2006 5

Policy vs Mechanism

• First step in addressing security: separate 
the what should be done from the how it 
should be done part

• The security policy specifies what is 
allowed and what is not

• A protection system is the mechanism that 
enforces the security policy

11/30/2006CS 3204 Fall 2006 6

Protection: AAA

• Core components of any protection mechanism
• Authentication

– Verify that we really know who we are talking to
• Authorization

– Check that user X is allowed to do Y
• Access enforcement

– Ensure that authorization decision is respected
– Hard: every system has holes

• Social vs technical enforcement



2

11/30/2006CS 3204 Fall 2006 7

Authentication Methods
• Passwords

– Weakest form, and most common
– Subject to dictionary attacks
– Passwords should not be stored in clear text, instead, 

use one-way hash function
• Badge or Keycard

– Should not be (easily) forgeable
– Problem: how to invalidate?

• Biometrics
– Problem: ensure trusted path to device

11/30/2006CS 3204 Fall 2006 8

Authorization

• Once user has been authenticated, need 
some kind of database to keep track of 
what they are allowed to do

• Simple model:
– Access Matrix

--Can R/WUser B

Exclusive 
Access

Can ReadUser A

TTY 2File 1

Principals
(e.g. users)

Objects
(e.g. files, resources)

11/30/2006CS 3204 Fall 2006 9

Variations on Access Control 
Matrices

• RBAC (Role-based Access Control)
– Principals are no longer users, but roles
– Examples: “mail admin”, “web admin”, etc.

• TE (Type Enforcement)
– Objects are grouped into classes or types; columns of 

matrix are then labeled with those types
• Domains vs Principals

– Rows represent “protection domain”
– Processes (or code) execute in one domain (book 

uses this terminology)
11/30/2006CS 3204 Fall 2006 10

Representing Access Matrices

• Problem: access matrices can be huge
– How to represent them in a condensed way?

• Two choices:
• By row: Capabilities

– What is principal X allowed to do?
• By column: Access Control Lists

– Who has access to resource Y?

11/30/2006CS 3204 Fall 2006 11

Access Control Lists
• General: store list of <user, set of privileges> for 

each object
• Example: files. For each file store who is allowed 

to access it (and how)
• Most filesystems support it.
• Groups can be used to compress the 

information:
– Old-style Unix permissions rwxr-xr-x

• Q.: where in the filesystem would you store 
ACLs/permissions?

11/30/2006CS 3204 Fall 2006 12

Capabilities

• General idea: store (capability) list of <object, 
set of privileges> for each user

• Typically used in systems that must be very 
secure
– Default is empty capability list

• Capabilities also often function as names
– Can access something if you know the name
– Must make names unforgeable, or must have system 

monitor who holds what capabilities (e.g., by storing 
them in protected area)



3

11/30/2006CS 3204 Fall 2006 13

Examples of Attacks

• Abuse of valid privilege
– Admin decides to delete your mp3s

• Denial of service attack
– Run this loop on your P4: 

• while (1) { mkdir(“x”); chdir(“x”); }

• Sniffing/Listening attack
• Trojan Horse
• Worm or virus

11/30/2006CS 3204 Fall 2006 14

Simple Stack Overflow Example
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

int
main()
{

char buf[8];
printf("Enter your name: ");
gets(buf);
printf("Your name is: %s\n", buf);

}

void
remove_all_files()
{

printf("remove all files called!\n");
}

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

int
main()
{

char buf[8];
printf("Enter your name: ");
gets(buf);
printf("Your name is: %s\n", buf);

}

void
remove_all_files()
{

printf("remove all files called!\n");
}

> nm ./stackattack | grep remove_all_file
080483e4 T remove_all_files
> od -h badinput 
0000000 83e4 0804 83e4 0804 83e4 0804 83e4 0804
*
0000120
> ./stackattack < badinput
Enter your name: Your name is: ä
remove all files called!

> nm ./stackattack | grep remove_all_file
080483e4 T remove_all_files
> od -h badinput 
0000000 83e4 0804 83e4 0804 83e4 0804 83e4 0804
*
0000120
> ./stackattack < badinput
Enter your name: Your name is: ä
remove all files called!

• In practice, attacker usually 
sends position-independent code 
along that exec()’s a shell
– Address Space Randomization is a 

possible (though insufficient) 
countermeasure

11/30/2006CS 3204 Fall 2006 15

Countermeasures (1)

• Principle of least privilege
– “need-to-know” basis: every process should 

have only access right for the operations it 
needs to do its work

– hard to implement: how can you be sure the 
program will still work? How can you be sure 
you’ve given just enough privileges and not 
more?

– example: Linux SE

11/30/2006CS 3204 Fall 2006 16

Countermeasures (2)

• Logging:
– Keep an audit log of all actions performed
– Must protect log (from theft & forgery)

• Verification & Proofs
– Problem of verifying the specification vs. 

implementation

11/30/2006CS 3204 Fall 2006 17

Trusted Computing Base

• The part of the system that enforces 
access control decisions
– Also protects authentication information

• Issues: 
– Single Bug in TCB may compromise entire 

security policy
– Need to keep it small and manageable
– Usually: entire kernel is part of TCB (huge!)

• Weakest link phenomenon

11/30/2006CS 3204 Fall 2006 18

• MLS-Multilevel 
Security
– Unclassified
– Confidential
– Secret
– Top Secret

• No read up
• No write down

– *-property

Trusted Systems

Properties: 
• Complete mediation (mandatory access control on every access)
• Isolated/tamper-proof reference monitor
• Verification (the hardest)



4

11/30/2006CS 3204 Fall 2006 19

Security & System Structure
• Q.: Does system structure matter when building 

secure systems?
• Monolithic kernels: processes call into kernel to 

obtain services (Pintos, Linux, Windows)
• Microkernels: processes call only into kernel to 

send/receive messages, they communicate with 
other processes to obtain services
– Asbestos [SOSP’05] exploits this to track information 

flow across processes
– HiStar [OSDI’06] optimizes this further by avoiding 

explicit message passing; using “call gates” instead

11/30/2006CS 3204 Fall 2006 20

Language-Based Protection

• Based on type-safe languages (Java, C#, 
etc.)
– Do not allow direct memory access
– Include access modifiers (private/public, etc.)
– Verify code before they execute it with respect 

to these safety property
• Build security systems on top of it that 

associates code with set of privileges


