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Announcements

* Project 4 due Dec 6, 11:59pm

* Reading assignments:
— Chapters 14 & 15

» Sample Final Exam posted
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Protection & Security

_vug] nia

mTﬁ;h

Security Requirements & Threats

* Requirement e Threat
— Confidentiality — Interception
— Integrity — Maodification
— Availability — Interruption
— Authenticity — Fabrication

The goal of a protection system is to ensure these
requirements and protect against accidental or
intentional misuse
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Policy vs Mechanism

« First step in addressing security: separate
the what should be done from the how it
should be done part

« The security policy specifies what is
allowed and what is not

A protection system is the mechanism that
enforces the security policy
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Protection: AAA

» Core components of any protection mechanism
* Authentication

— Verify that we really know who we are talking to
 Authorization

— Check that user X is allowed to do Y
* Access enforcement

— Ensure that authorization decision is respected

— Hard: every system has holes
» Social vs technical enforcement
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Authentication Methods

« Passwords
— Weakest form, and most common
— Subject to dictionary attacks

— Passwords should not be stored in clear text, instead,
use one-way hash function

» Badge or Keycard
— Should not be (easily) forgeable
— Problem: how to invalidate?

¢ Biometrics
— Problem: ensure trusted path to device
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Variations on Access Control
Matrices

¢ RBAC (Role-based Access Control)
— Principals are no longer users, but roles
— Examples: “mail admin”, “web admin”, etc.
e TE (Type Enforcement)

— Objects are grouped into classes or types; columns of
matrix are then labeled with those types

* Domains vs Principals
— Rows represent “protection domain”

— Processes (or code) execute in one domain (book
uses this terminology)
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Access Control Lists

« General: store list of <user, set of privileges> for
each object

Example: files. For each file store who is allowed
to access it (and how)

Most filesystems support it.

» Groups can be used to compress the
information:

— Old-style Unix permissions rwxr-xr-x

* Q.: where in the filesystem would you store
ACLs/permissions?
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Authorization

» Once user has been authenticated, need
some kind of database to keep track of
what they are allowed to do

. Objects
. Slmple model: (e.q. files, resources)
— Access Matrix

File 1 TTY 2
Principals User A Can Read |Exclusive
(e.g. users) Access

User B CanRIW |-
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Representing Access Matrices

» Problem: access matrices can be huge
— How to represent them in a condensed way?
» Two choices:
» By row: Capabilities
— What is principal X allowed to do?
* By column: Access Control Lists
—Who has access to resource Y?
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Capabilities

» General idea: store (capability) list of <object,
set of privileges> for each user

» Typically used in systems that must be very
secure
— Default is empty capability list

» Capabilities also often function as names
— Can access something if you know the name

— Must make names unforgeable, or must have system
monitor who holds what capabilities (e.g., by storing
them in protected area)
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Examples of Attacks

« Abuse of valid privilege
— Admin decides to delete your mp3s
Denial of service attack
— Run this loop on your P4:
« while (1) { mkdir(“x"); chdir(“x"); }
Sniffing/Listening attack
Trojan Horse
« Worm or virus
b Virginia
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Simple Stack Overflow Example

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

int

main()
char buf[g];
printf(“Enter your name: ");
gets(buf);

printf("Your name is: %s\n", buf);
}

void
remove_all_files()

printf("remove all files called!\n");

> nm ./stackattack | grep remove_all_file

080483e4 T remove_all_files

> od -h badinput

0000000 83e4 0804 83e4 0804 83e4 0804 83e4 0804
*

0000120

> /stackattack < badinput

Enter your name: Your name is: &
remove all files called!

< In practice, attacker usually
sends position-independent code
along that exec()’s a shell
— Address Space Randomization is a
possible (though insufficient)
countermeasure
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Countermeasures (1)

« Principle of least privilege

—“need-to-know” basis: every process should
have only access right for the operations it
needs to do its work

—hard to implement: how can you be sure the
program will still work? How can you be sure
you've given just enough privileges and not
more?

—example: Linux SE
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Countermeasures (2)

 Logging:

— Keep an audit log of all actions performed
— Must protect log (from theft & forgery)
* Verification & Proofs

— Problem of verifying the specification vs.
implementation
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Trusted Computing Base

* The part of the system that enforces
access control decisions
— Also protects authentication information
* Issues:

— Single Bug in TCB may compromise entire
security policy
— Need to keep it small and manageable

— Usually: entire kernel is part of TCB (huge!)
* Weakest link phenomenon
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Trusted Systems

e MLS-Multilevel
Security
— Unclassified
— Confidential
— Secret
— Top Secret

* Noread up

* No write down
— *-property

Properties:

« Complete mediation (mandatory access control on every access)
« Isolated/tamper-proof reference monitor

« Verification (the hardest)

Virgini
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Security & System Structure

* Q.: Does system structure matter when building
secure systems?

* Monolithic kernels: processes call into kernel to
obtain services (Pintos, Linux, Windows)

» Microkernels: processes call only into kernel to
send/receive messages, they communicate with
other processes to obtain services
— Asbestos [SOSP’05] exploits this to track information

flow across processes
— HiStar [OSDI'06] optimizes this further by avoiding
explicit message passing; using “call gates” instead
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Language-Based Protection

» Based on type-safe languages (Java, C#,

etc.)

— Do not allow direct memory access

— Include access modifiers (private/public, etc.)

— Verify code before they execute it with respect
to these safety property

Build security systems on top of it that

associates code with set of privileges
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