CS 3204
Operating Systems

Lecture 26
Godmar Back

Virgini

mTec_h

Announcements

* Project 4 due Dec 6, 11:59pm

* Reading assignments:
— Chapters 14 & 15

» Sample Final Exam posted

v“@ﬂm‘a.r l CS 3204 Fall 2006 11/30/2006 2

Protection & Security

_vug] nia

mTﬁ;h

Security Requirements & Threats

* Requirement e Threat
— Confidentiality — Interception
— Integrity — Maodification
— Availability — Interruption
— Authenticity — Fabrication

The goal of a protection system is to ensure these
requirements and protect against accidental or
intentional misuse

Virginia CS 3204 Fall 2006 11/30/2006 4

mTﬁ;h

Policy vs Mechanism

« First step in addressing security: separate
the what should be done from the how it
should be done part

« The security policy specifies what is
allowed and what is not

A protection system is the mechanism that
enforces the security policy

v“@ﬂm‘a.r l €S 3204 Fall 2006 11/30/2006 5

Protection: AAA

» Core components of any protection mechanism
* Authentication

— Verify that we really know who we are talking to
 Authorization

— Check that user X is allowed to do Y
* Access enforcement

— Ensure that authorization decision is respected

— Hard: every system has holes
» Social vs technical enforcement

v“@ﬂm‘a.r l CS 3204 Fall 2006 11/30/2006 6




Authentication Methods

« Passwords
— Weakest form, and most common
— Subject to dictionary attacks

— Passwords should not be stored in clear text, instead,
use one-way hash function

» Badge or Keycard
— Should not be (easily) forgeable
— Problem: how to invalidate?

¢ Biometrics
— Problem: ensure trusted path to device

V“Emm‘a.r l CS 3204 Fall 2006 11/30/2006 7

Variations on Access Control
Matrices

¢ RBAC (Role-based Access Control)
— Principals are no longer users, but roles
— Examples: “mail admin”, “web admin”, etc.
e TE (Type Enforcement)

— Objects are grouped into classes or types; columns of
matrix are then labeled with those types

* Domains vs Principals
— Rows represent “protection domain”

— Processes (or code) execute in one domain (book
uses this terminology)

V“Emmla.r ! CS 3204 Fall 2006 11/30/2006 9

Access Control Lists

« General: store list of <user, set of privileges> for
each object

Example: files. For each file store who is allowed
to access it (and how)

Most filesystems support it.

» Groups can be used to compress the
information:

— Old-style Unix permissions rwxr-xr-x

* Q.: where in the filesystem would you store
ACLs/permissions?

V“Emm‘a.r l €S 3204 Fall 2006 11/30/2006 1

Authorization

» Once user has been authenticated, need
some kind of database to keep track of
what they are allowed to do

. Objects
. Slmple model: (e.q. files, resources)
— Access Matrix

File 1 TTY 2
Principals User A Can Read |Exclusive
(e.g. users) Access

User B CanRIW |-

V“Emm‘a.r l CS 3204 Fall 2006 11/30/2006 8

Representing Access Matrices

» Problem: access matrices can be huge
— How to represent them in a condensed way?
» Two choices:
» By row: Capabilities
— What is principal X allowed to do?
* By column: Access Control Lists
—Who has access to resource Y?

V“Emmla.r ! CS 3204 Fall 2006 11/30/2006 10

Capabilities

» General idea: store (capability) list of <object,
set of privileges> for each user

» Typically used in systems that must be very
secure
— Default is empty capability list

» Capabilities also often function as names
— Can access something if you know the name

— Must make names unforgeable, or must have system
monitor who holds what capabilities (e.g., by storing
them in protected area)

V“Emm‘a.r l CS 3204 Fall 2006 11/30/2006 12




Examples of Attacks

« Abuse of valid privilege
— Admin decides to delete your mp3s
Denial of service attack
— Run this loop on your P4:
« while (1) { mkdir(“x"); chdir(“x"); }
Sniffing/Listening attack
Trojan Horse
« Worm or virus
b Virginia

CS 3204 Fall 2006 11/30/2006 13
mTec_h

Simple Stack Overflow Example

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

int

main()
char buf[g];
printf(“Enter your name: ");
gets(buf);

printf("Your name is: %s\n", buf);
}

void
remove_all_files()

printf("remove all files called!\n");

> nm ./stackattack | grep remove_all_file

080483e4 T remove_all_files

> od -h badinput

0000000 83e4 0804 83e4 0804 83e4 0804 83e4 0804
*

0000120

> /stackattack < badinput

Enter your name: Your name is: &
remove all files called!

< In practice, attacker usually
sends position-independent code
along that exec()’s a shell
— Address Space Randomization is a
possible (though insufficient)
countermeasure

Virgini

mTec_h

CS 3204 Fall 2006 11/30/2006 14

Countermeasures (1)

« Principle of least privilege

—“need-to-know” basis: every process should
have only access right for the operations it
needs to do its work

—hard to implement: how can you be sure the
program will still work? How can you be sure
you've given just enough privileges and not
more?

—example: Linux SE

v“@-nmla.r ! CS 3204 Fall 2006 11/30/2006 15

Countermeasures (2)

 Logging:

— Keep an audit log of all actions performed
— Must protect log (from theft & forgery)
* Verification & Proofs

— Problem of verifying the specification vs.
implementation

v“@-nmla.r ! CS 3204 Fall 2006 11/30/2006 16

Trusted Computing Base

* The part of the system that enforces
access control decisions
— Also protects authentication information
* Issues:

— Single Bug in TCB may compromise entire
security policy
— Need to keep it small and manageable

— Usually: entire kernel is part of TCB (huge!)
* Weakest link phenomenon

Virgini

CS 3204 Fall 2006 11/30/2006 17
mTec_h

Trusted Systems

e MLS-Multilevel
Security
— Unclassified
— Confidential
— Secret
— Top Secret

* Noread up

* No write down
— *-property

Properties:

« Complete mediation (mandatory access control on every access)
« Isolated/tamper-proof reference monitor

« Verification (the hardest)

Virgini

CS 3204 Fall 2006 11/30/2006 18
mTec_h




Security & System Structure

* Q.: Does system structure matter when building
secure systems?

* Monolithic kernels: processes call into kernel to
obtain services (Pintos, Linux, Windows)

» Microkernels: processes call only into kernel to
send/receive messages, they communicate with
other processes to obtain services
— Asbestos [SOSP’05] exploits this to track information

flow across processes
— HiStar [OSDI'06] optimizes this further by avoiding
explicit message passing; using “call gates” instead

Virginia CS 3204 Fall 2006 11/30/2006 19

mTec_h

Language-Based Protection

» Based on type-safe languages (Java, C#,

etc.)

— Do not allow direct memory access

— Include access modifiers (private/public, etc.)

— Verify code before they execute it with respect
to these safety property

Build security systems on top of it that

associates code with set of privileges

Virginia CS 3204 Fall 2006 11/30/2006 20

mTec_h




