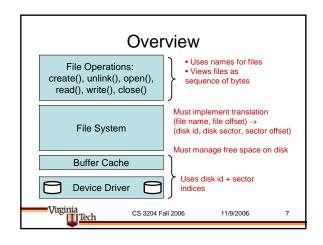
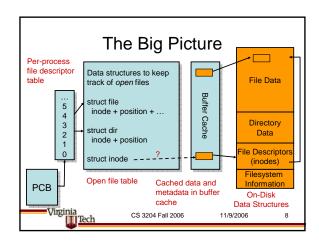

CS 3204 **Operating Systems** Lecture 23 Godmar Back

Filesystem Requirements

- Naming
 - Should be flexible, e.g., allow multiple names for same files
 - Support hierarchy for easy of use
- Persistence
 - Want to be sure data has been written to disk in case crash occurs
- · Sharing/Protection
 - Want to restrict who has access to files
 - Want to share files with other users


CS 3204 Fall 2006 11/9/2006


FS Requirements (cont'd)

- Speed & Efficiency for different access patterns
 - Sequential access
 - Random access
 - Sequential is most common & Random next
 - Other pattern is Keyed access (not usually provided by OS)
- Minimum Space Overhead
 - Disk space needed to store metadata is lost for user data
- Twist: all metadata that is required to do translation must be stored on disk
 - Translation scheme should minimize number of additional accesses for a given access pattern
 - Harder than, say page tables where we assumed page tables themselves are not subject to paging!

CS 3204 Fall 2006

11/9/2006

Steps in Opening & Reading a File

- · Lookup (via directory)
 - find on-disk file descriptor's block number
- Find entry in open file table (struct inode list in Pintos)
 - Create one if none, else increment ref count
- · Find where file data is located
 - By reading on-disk file descriptor
- · Read data & return to user

Open File Table

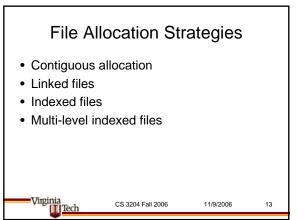
- inode represents file
 - at most 1 in-memory instance per unique file
 - #number of openers & other properties
- file represents one or more processes using an file
 - With separate offsets for byte-stream
- dir represents an inode of a directory file
- Generally:
 - None of data in OFT is persistent
 - Reflects how processes are currently using files
 - Lifetime of objects determined by open/close

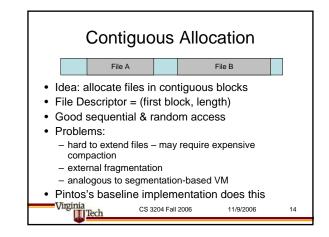
Reference counting is used

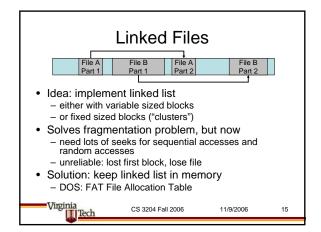
Virginia CS 3204 Fall 2006 11/9/2006 10

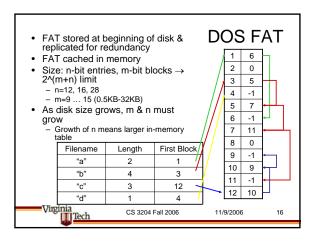
File Descriptors ("inodes")

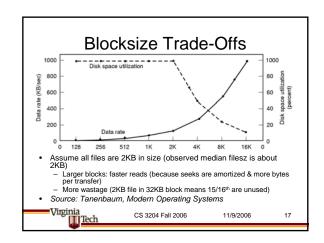
- Term "inode" can refer to 3 things:
 - 1. in-memory inode
 - Store information about an open file, such as how many openers, corresponds to on-disk file descriptor
 - 2. on-disk inode
 - Region on disk, entry in file descriptor table, that stores
 persistent information about a file who owns it, where to
 find its data blocks, etc.
 - 3. on-disk inode, when cached in buffer cache
 - A bytewise copy of 2. in memory
- Q.: Should in-memory inode store a pointer to cached on-disk inode?

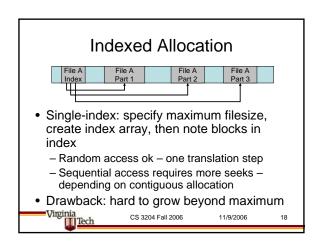

Filesystem Information

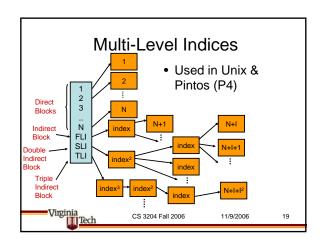

 Contains "superblock" stores information such as size of entire filesystem, etc.

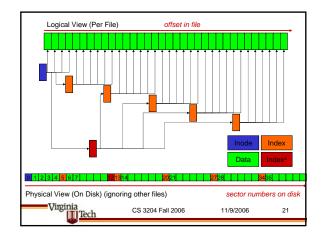


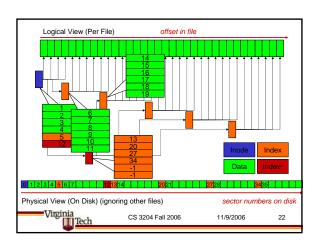

- Location of file descriptor table & free map
- Free Block Map
 - Bitmap used to find free blocks
 - Typically cached in memory
- Superblock & free map often replicated in different positions on disk


Virginia CS 3204 Fall 2006 11/9/2006 12









Multi-Level Indices If filesz < N * BLKSIZE, can store all information in direct block array Biased in favor of small files (ok because most files are small...) Assume index block stores I entries If filesz < (I + N) * BLKSIZE, 1 indirect block suffices Q.: What's the maximum size before we need triple-indirect block? Q.: What's the per-file overhead (best case, worst case?)

