
1

CS 3204
Operating Systems

Godmar Back

Lecture 20

11/9/2006CS 3204 Fall 2006 2

Announcements

• Project 3 milestone feedback was sent out
• Project 1 grades were sent out
• Project 3 due November 8
• Reading assignment:

– Chapter 8 & 9 
• full readthrough is highly recommended!

VM Design Issues & 
Techniques

11/9/2006CS 3204 Fall 2006 4

# of Page Faults vs Frame Allocation

• Desired behavior of paging algorithm: reduce page fault 
rate below “acceptable level” as number of available 
frames increases

• Q.: does increasing number of physical frames always 
reduce page fault rate?
– A.: usually yes, but for some algorithms not guaranteed 

(“Belady’s anomaly”)

11/9/2006CS 3204 Fall 2006 5

Page Buffering
• Select victim (as dictated by page replacement algorithm 

– works as an add-on to any algorithm we discussed)
• But don’t evict victim – put victim on tail of victim queue. 

Evict head of that queue instead.
• If victim page is touched before it moves to head of 

victim queue, simply reuse frame
• Further improvement: keep queue of unmodified victims 

(for quick eviction – aka free page list) and separate 
queue of modified pages (aka modified list - allows write-
back in batch)

• Related issue: when should you write modified pages to 
disk?
– Options: demand cleaning vs pre-cleaning (or pre-flushing)

11/9/2006CS 3204 Fall 2006 6

Local Replacement
• So far, considered global replacement algorithms

– Most widely used
• But could also divide memory in pools

– Per-process or per-user
• On frame allocation, requesting process will evict pages 

from pool to which it belongs
• Advantage: Isolation

– No between-process interference
• Disadvantage: Isolation

– Can’t temporarily “borrow” frames from other pools
• Q.: How big should pools be?

– And when should allocations change?

P1used P2usedP2free

?



2

11/9/2006CS 3204 Fall 2006 7

When Virtual Memory works well

• Locality
– 80% of accesses are to 20% of pages
– 80% of accesses are made by 20% of code

• Temporal locality:
– Page that’s accessed will be accessed again in near 

future
• Spatial locality:

– Prefetching pays off: if a page is accessed, 
neighboring page will be accessed

• If VM works well, average access to all memory 
is about as fast as access to physical memory

11/9/2006CS 3204 Fall 2006 8

VM Access Time & Page Fault Rate

• Consider expected access time in terms of fraction p of 
page accesses that don’t cause page faults.

• Then 1-p is page fault frequency 
• Assume p = 0.99, assume memory is 100ns fast, and 

page fault servicing takes 10ms – how much slower is 
your VM system compared to physical memory?

• access time = 99ns + 0.01*(10000100) ns ≈ 100,000ns 
or 0.1ms
– Compare to 100ns or 0.0001ms speed ≈ about 1000x slowdown

• Conclusion: even low page fault rates lead to huge 
slowdown 

access time = p * memory access time 
+ (1-p) * (page fault service time + memory access time)

11/9/2006CS 3204 Fall 2006 9

Thrashing: When Virtual Memory 
Does Not Work Well

• System accesses a page, evicts another page 
from its frame, and next access goes to just-
evicted page which must be brought in

• Worst case a phenomenon called Thrashing
– leads to constant swap-out/swap-in
– 100% disk utilization, but no process makes progress

• CPU most idle, memory mostly idle

11/9/2006CS 3204 Fall 2006 10

When does Thrashing occur?

• Process does exhibit locality, but is simply 
too large
– Here: (assumption of) locality hurts us

• Process doesn’t exhibit locality
– Does not reuse pages

• Processes individually fit & exhibit locally, 
but in total are too large for the system to 
accommodate all

11/9/2006CS 3204 Fall 2006 11

What to do about Thrashing?
• Buy more memory 

– ultimately have to do that
– increasing memory sizes ultimately reason why 

thrashing is nowadays less of a problem than in the 
past – still OS must have strategy to avoid worst case

• Ask user to kill process
• Let OS decide to kill processes that are thrashing

– Linux has an option to do that
• In many cases, still: reboot only time-efficient 

option
– But OS should have reasonable strategy to avoid it if it 

can

11/9/2006CS 3204 Fall 2006 12

OS Strategies to prevent thrashing

• Or contain its effects
• Define: “working set” (1968, Denning)
• Set of pages that a process accessed during 

some window/period of length T in the past
– Hope that it’ll match the set accessed in the future

• Idea: if we can manage to keep working set in 
physical memory, thrashing will not occur



3

11/9/2006CS 3204 Fall 2006 13

Working Set
• Suppose we know or can estimate working set –

how could we use it?
• Idea 1: give each process as much memory as 

determined by size of its WS
• Idea 2: preferably evict frames that hold pages 

that don’t seem to be part of WS
• Idea 3: if WS cannot be allocated, swap out 

entire process (and exclude from scheduling for 
a while)
– “medium term scheduling”, “swap-out scheduling”
– (Suspended) inactive vs active processes
– Or don’t admit until there’s enough frames for their 

WS (“long term scheduling”)
11/9/2006CS 3204 Fall 2006 14

Estimating Working Set
• Compute “idle time” for each page

– Amount of CPU time process received since last access to page
• On page fault, scan resident pages

– If referenced, set idle time to 0
– If not referenced, idle_time += time since last scan
– If idle_time > T, consider to not be part of working set

• This is known as working set replacement algorithm 
[Denning 1968]

• Variation is WSClock [Carr 1981]
– treats working set a circular list like global clock does, and 

updates “time of last use” (using a process’s CPU use as a 
measure) – evicting those where 
T_last < T_current - T

11/9/2006CS 3204 Fall 2006 15

Page Fault Frequency
• Alternative method of working set estimation

– PFF: # page faults/instructions executed
– Pure CPU perspective vs memory perspective 

provided by WSClock
• Below threshold – can take frames away from 

process
• Above threshold – assign more frames
• Far above threshold – suspect thrashing & swap 

out
• Potential drawback: can be slow to adopt to 

periods of transition

11/9/2006CS 3204 Fall 2006 16

Clock-PRO
• Clock and algorithms like it 

try to approximate LRU:
– LRU does not work well for: 
– Sequential scans, large loops

• Alternative:
– Reuse distance: should replace page with large reuse 

distance
• Clock-PRO: Idea – extend our focus by 

remembering information about pages that were 
evicted from frames previously

• See [Jiang 2005]

Segmentation

11/9/2006CS 3204 Fall 2006 18

Segmentation

• Historical alternative to paging
• Instead of dividing virtual address space in 

many small, equal-sized pages, divide into 
a few, large segments

• Virtual address is then (segment number, 
segment offset)

segno segmentoffset

Segment Table
seg base | seg limit

m
em

ory

+
< limit?



4

11/9/2006CS 3204 Fall 2006 19

Segmentation (2)
• Advantages: 

– little internal fragmentation “segments can be sized 
just right”

– easy sharing – can share entire code segment
– easy protection – only have to set access privileges 

for segment
– small number of segments means small segment 

table sizes
• Disadvantages:

– external fragmentation (segment requires physically 
contiguous addresses!)

– if segment is partially idle, can’t swap out

11/9/2006CS 3204 Fall 2006 20

Segmentation (3)
• Pure segmentation is no longer used

– (Most) RISC architectures don’t support segmentation at all
– Other architectures combine segmentation & paging 

• Intel x86 started out with segmentation, then added 
paging
– Segment number is carried in special set of registers (GS, ES, 

FS, SS), point to “selectors” kept in descriptor tables
– Instruction opcode determines with segment is used
– Today: segmentation unit is practically unused (in most 32-bit 

OS, including Pintos): all segments start at 0x00000000 and end 
at 0xFFFFFFFF

– Do not confuse with Pintos’s code/data segments, which are 
linear subregions of virtual addresses spanning multiple virtual 
pages

• Note: superpages are somewhat of a return to 
segmentation

11/9/2006CS 3204 Fall 2006 21

Combining Segmentation & Paging

Memory Management Wrap-Up

11/9/2006CS 3204 Fall 2006 23

Mem Mgmt Without Virtual Memory

• Book discusses this as motivation
– Historically important, and still important for VM-less 

devices (embedded devices, etc.)
• Imagine if we didn’t have VM, it would be hard or 

impossible to
– Retain the ability to load a program anywhere in 

memory
– Accommodate programs that grow or shrink in size
– Use idle memory for other programs quickly
– Move/relocate a running program in memory

• VM drastically simplifies systems design
11/9/2006CS 3204 Fall 2006 24

User-level Memory Management
• Goals:

– Minimize fragmentation
– Speed
– Maximize locality
– Provide for some error 

detection
• Typical algorithms:

– First-fit, best-fit
– No universally best algorithm: 

can always construct worst 
case sequence

• Conservative heap growth
– “wilderness preservation”

Code

Data
BSS

Stack

wilderness

Heap user-level allocator

code segment

0

MAX_VIRTUAL


