
1

CS 3204
Operating Systems

Godmar Back

Lecture 17

10/19/2006CS 3204 Spring 2006 2

Announcements
• Project 3 milestone due October 26

– No extensions here, accept early submissions (send us email for
prompt grading!)

• Project 3 due November 8
– If your project 2 still doesn’t 100% work, seek help now

• Project 3 Help Sessions
– Thursday (tonight) McB 126 7-9pm
– Monday McB 113 7-9pm

• Midterm graded
• Reading assignment:

– Chapter 8 & 9

Virtual Memory

Page Tables & TLB (cont’d)

10/19/2006CS 3204 Spring 2006 4

Page Tables Function & TLB

• For each combination (process id, virtual_addr,
mode, type of access) must decide
– If access is permitted
– If permitted:

• if page is resident, use physical address
• if page is non-resident, page table has information on how to

get the page in memory
• CPU uses TLB for actual translation – page

table feeds the TLB on a TLB miss

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × { read, write, execute }

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

Trans (with paging):
{ Process Ids } × { Virtual Addresses } × { user, kernel } × { read, write, execute }

→ { Physical Addresses } ∪ { INVALID } ∪ { Some Location On Disk }

10/19/2006CS 3204 Spring 2006 5

Address Translation & TLB
Virtual Address

TLB Lookup

Check Permissions

Physical AddressPage Fault Exception
“Protection Fault”

Page Table Walk

Page Fault Exception
“Page Not Present”

TLB Reload

Terminate Process

miss hit

restart instruction

page present else
okdenied

Load Page

done in hardware

done in OS software
done in software

or hardwaremachine-dependent

machine-independent
logic

10/19/2006CS 3204 Spring 2006 6

Representing Page Tables

• Choice impacts speed of access vs size
needed to store mapping information:
– Simple arrays (PDP-11, VAX)

• Fast, but required space makes it infeasible for
large, non-continuous address spaces

– Search trees (aka “hierarchical” or “multi-
level” page tables)

– Hash table

2

10/19/2006CS 3204 Spring 2006 7

Example: x86 Address Translation

• Two-level page table
• Source: [IA32-v3] 3.7.1

10/19/2006CS 3204 Spring 2006 8

Two-level Page Table

• Q.: how many pages are needed in
– Minimum case
– Worst case? (what is the worst case?)

10/19/2006CS 3204 Spring 2006 9

Example: x86 Page Table Entry

• Note: if bit 0 is 0 (“page not present”) MMU will
ignore bits 1-31 – OS can use those at will

10/19/2006CS 3204 Spring 2006 10

Page Table Management on Linux

• Interesting history:
– Linux was originally x86 only with 32bit

physical addresses. Its page table matched
the one used by x86 hardware

– Since:
• Linux has been ported to other architectures
• x86 has grown to support 36bit physical addresses

(PAE) – required 3-level page table

• Linux’s now uses 4-level page table to
support 64-bit architectures

10/19/2006CS 3204 Spring 2006 11

Linux Page Tables (2)

• On x86 – hardware == software
– On 32-bit (no PAE) middle directory disappears

• With four-level, “PUD” page upper directory is added (not shown)

10/19/2006CS 3204 Spring 2006 12

Inverted Page Tables

• Alternative to multi-
level page tables –
size is O(physical
memory)

3

10/19/2006CS 3204 Spring 2006 13

Summary
• Page tables store mapping information from virtual to

physical addresses, or to find non-resident pages
– Input is: process id, current mode (user/kernel) and kind of

access (read/write/execute)
• TLBs cache such mappings
• Page tables are consulted when TLB miss occurs

– Either all software, or in hardware
• OS must maintain its page table(s) and, if hardware TLB

reload is used, the page table (on x86 aka “page
directory + table”) that is consulted by MMU
– These two tables may or may not be one and the same

• The OS page table must have sufficient information to
load a page’s content from disk

Virtual Memory

Paging Techniques

10/19/2006CS 3204 Spring 2006 15

Demand paging

• Idea: only keep data in memory that’s being
used
– Needed for virtualization – don’t use up physical

memory for data processes don’t access
• Requires that actual allocation of physical page

frames be delayed until first access
• Many variations

– Lazy loading of text & data, mmapped pages & newly
allocated heap pages

– Copy-on-write
10/19/2006CS 3204 Spring 2006 16

ustack (1)

Lazy Loading

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process faults when
touching address in data
segment …

stack page was allocated eagerly

data + code pages are noted
in page table, but no physical
frame has been allocated

10/19/2006CS 3204 Spring 2006 17

ustack (2)
ustack (1)

Stack Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process calls recursive
function or allocates large
local variable

page fault at about here

10/19/2006CS 3204 Spring 2006 18

Microscopic View of Stack Growth
push $ebp
sub $20, $esp
push $eax
push $ebx

push $ebp
sub $20, $esp
push $eax
push $ebx

0x8000
esp = 0x8004
esp = 0x8000

esp = 0x7FEC
esp = 0x7FE8

intr0e_stub:
…
call page_fault()
…
iret

intr0e_stub:
…
call page_fault()
…
iret

Page Fault!

void page_fault() {
get fault addr
determine if it’s close to user $esp
Yes: allocate page frame

install page in page table
No: terminate process

}

esp = 0x7FE4

• Can resume after page fault (and unless f→eip
is changed) this will retry the faulting instruction
(here: push $eax)
– MMU will walk hardware page table again

4

10/19/2006CS 3204 Spring 2006 19

Fault Resumption
• Requires that faulting CPU instruction be restartable

– Most CPUs are designed this way
• Very powerful technique

– Entirely transparent to user program: user program is frozen in
time until OS decides what to do

• Can be used to emulate lots of things
– Programs that just ignore segmentation violations (!?) (here:

resume with next instruction – retrying would fault again)
– Subpage protection (protect entire page, take fault on access,

check if address was to an valid subpage region)
– Virtual machines (vmware, qemu – run entire OS on top of

another OS)
– Garbage collection
– Distributed Shared Memory

10/19/2006CS 3204 Spring 2006 20

Distributed Shared Memory
• Idea: allows accessing other machine’s memory as if it

were local
• Augment page table to be able to keep track of network

locations:
– local virtual address → (remote machine, remote address)

• On page fault, send request for data to owning machine,
receive data, allocate & write to local page, map local
page, and resume
– Process will be able to just use pointers to access all memory

distributed across machines – fully transparent
• Q.: how do you guarantee consistency?

– Lots of options

10/19/2006CS 3204 Spring 2006 21

ustack (1)

Heap Growth

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process needs memory to
place malloc() objects in

Process calls sbrk(addr)udata (2)

Process faults when
touching new memory

10/19/2006CS 3204 Spring 2006 22

ustack (1)

mmap()

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)

Pintos loads the first process …
P1

Pintos then starts the first
process …

Process faults because code
page is not present …

Process opens file, calls
mmap(fd, addr)

ummap (1)

Process faults when
touching mapped file

Page fault handler allocs
page, maps it, reads
data from disk:

