CS 3204
Operating Systems

Lecture 17
Godmar Back

Virgini

mTec_h

Virtual Memory

Page Tables & TLB (cont'd)

_vug] nia

mTed]

Address Translation & TLB

Virtual Address done in hardware
done in OS software

done in software
or hardware

restart instruction TLB Lookup

miss

machine-dependent

Page Table Walk
Check Permissions
page present denied ok

TLB Reload Page Fault Exception Page Fault Exception Physical Address
“Page Not Present” “Protection Fault”
machine-independent |
logic
Load Page Terminate Process
v“gmm‘a.r och CS 3204 Spring 2006 10/19/2006 5

Announcements

« Project 3 milestone due October 26

— No extensions here, accept early submissions (send us email for
prompt grading!)

« Project 3 due November 8
— If your project 2 still doesn’t 100% work, seek help now
« Project 3 Help Sessions
— Thursday (tonight) McB 126 7-9pm
— Monday McB 113 7-9pm
¢ Midterm graded
« Reading assignment:
— Chapter 8 &9

Virgini

CS 3204 Spring 2006 10/19/2006 2
mTec_h pring

Page Tables Function & TLB

Trans (with paging):
{ Process Ids } x { Virtual Addresses } x { user, kernel } x { read, write, execute }

— {Physical Addresses } U { INVALID } U { Some Location On Disk }

» For each combination (process id, virtual_addr,
mode, type of access) must decide
— If access is permitted
— If permitted:
« if page is resident, use physical address

« if page is non-resident, page table has information on how to
get the page in memory

» CPU uses TLB for actual translation — page
table feeds the TLB on a TLB miss

_vug] nia

1 CS 3204 Spring 2006 10/19/2006 4
WT pring)/19/.

Representing Page Tables

 Choice impacts speed of access vs size
needed to store mapping information:
— Simple arrays (PDP-11, VAX)

« Fast, but required space makes it infeasible for
large, non-continuous address spaces

— Search trees (aka “hierarchical” or “multi-
level” page tables)

— Hash table

Virgini

CS 3204 Spring 2006 10/19/2006 6
mTec_h pring

Example: x86 Address Translation

[
offset__|

A2 a-KByte Page

o Fio PogeTatie Lol Prysical Address)
Page Direciory l |
o Page-Totsa Eriey -
L] Dwrectory Entry - !
320 . 1024 POE » 1024 PTE = 2 Pages
1 CRIFOBR) |

2 bits aligned onto & 4-KByte boundary

* Two-level page table

e Source: [IA32-v3] 3.7.1
_V“Emﬁm CS 3204 Spring 2006 10/19/2006

Example: x86 Page Table Entry

Page-Table Entry (4-KByte Page)
a 1211 98T I

Page Base Address l.m allala
o

e
Giobal

|
Page Tabls A whoi |
Dty - i |
Accessed |
Cache Disabled |
Write-Thecagh -

visor

* Note: if bit 0 is O (“page not present”) MMU will
ignore bits 1-31 — OS can use those at will

v@ﬂﬁm CS 3204 Spring 2006 10/19/2006 9

Linux Page Tables (2)

Nirtasd sddress

Ghobal Dbretory | bl Drwssory | P T | Otk

[
el

« On x86 — hardware == software
— On 32-bit (no PAE) middle directory disappears
« With four-level, “PUD” page upper directory is added (not shown)

v@“ﬁm CS 3204 Spring 2006 10/19/2006 1

Two-level Page Table

Figure £4 A Two-Level Hicrurchical Page Table
* Q.: how many pages are needed in
— Minimum case

— Worst case? (what is the worst case?)
vmﬁm CS 3204 Spring 2006 10/19/2006 8

Page Table Management on Linux

« Interesting history:

— Linux was originally x86 only with 32bit
physical addresses. Its page table matched
the one used by x86 hardware

— Since:

« Linux has been ported to other architectures
* x86 has grown to support 36bit physical addresses
(PAE) — required 3-level page table
* Linux’s now uses 4-level page table to
support 64-bit architectures

v@ﬂﬁm CS 3204 Spring 2006 10/19/2006 10

Inverted Page Tables

Virtusd Akl
i

[rove e [0

o i

« Alternative to multi- j
level page tables —

size is O(physical e
memory) e

e eotry far e
bl ey I

v@ﬂﬁm CS 3204 Spring 2006 10/19/2006 12

Summary

« Page tables store mapping information from virtual to
physical addresses, or to find non-resident pages

— Input is: process id, current mode (user/kernel) and kind of
access (read/write/execute)

e TLBs cache such mappings Vlrtual Memory

» Page tables are consulted when TLB miss occurs
— Either all software, or in hardware

* OS must maintain its page table(s) and, if hardware TLB f .
reload is used, the page table (on x86 aka “page Paglng Technlques
directory + table”) that is consulted by MMU
— These two tables may or may not be one and the same

» The OS page table must have sufficient information to
load a page’s content from disk

Virginia CS 3204 Spring 2006 10/19/2006 13 Virginia

i i

Lazy Loading

Pintos loads the first process ...

Demand paging

:Iaxlben starts the first
Pracess....

* ldea: only keep data in memory that’s being
used
— Needed for virtualization — don’t use up physical
memory for data processes don’t access
» Requires that actual allocation of physical page €0000000_*
frames be delayed until first access

1GB

¢ Many variations @ >
. O] data + code pages aremoted_ used
— Lazy loading of text & data, mmapped pages & newly ™ in page table; but no physical
allocated heap pages —_frame has been allocated
— Copy-on-write o
Virginia CS 3204 Spring 2006 10/19/2006 15 Virginia CS 3204 Spring 2006 10/19/2006 16

W']h:h

FFFFFFFF
p1 Stack Growth : o
, _ Microscopic View of Stack Growth
Pintos loads the first process ...
C0400000 push $ebp
X sub $20, $esp
8 osm\en\ S\tarts the first puish Seax——]
- _ push $ebx
|_esp = 0x8004
0x8000 esp= Oxsooy
esp = OX7FE intrOe_stub:
[““esp = OX7FES,
€0000000_", [esp=O0x7FE4 call page_fault()
void page_fault() { t
o get fau!t aqd!'
o used + Can resumedgfiéfpege feuittaithunless f-eip
- ; r N -
is changed) tRISSRIAERHHE fautting instruction
(here: push $@ahinate process
o1 — MMU wilkwalk hardware page table again
ngmﬁ']h:h CS 3204 Spring 2006 10/19/2006 17 ngmﬁ']h:h CS 3204 Spring 2006 10/19/2006 18

Fault Resumption

* Requires that faulting CPU instruction be restartable
— Most CPUs are designed this way
» Very powerful technique
— Entirely transparent to user program: user program is frozen in
time until OS decides what to do
« Can be used to emulate lots of things
— Programs that just ignore segmentation violations (!?) (here:
resume with next instruction — retrying would fault again)
— Subpage protection (protect entire page, take fault on access,
check if address was to an valid subpage region)
— Virtual machines (vmware, gemu — run entire OS on top of
another OS)
— Garbage collection
— Distributed Shared Memory

CS 3204 Spring 2006 10/19/2006 19

Distributed Shared Memory

« Idea: allows accessing other machine’s memory as if it
were local

« Augment page table to be able to keep track of network
locations:

— local virtual address — (remote machine, remote address)

« On page fault, send request for data to owning machine,
receive data, allocate & write to local page, map local
page, and resume

— Process will be able to just use pointers to access all memory
distributed across machines — fully transparent

* Q.: how do you guarantee consistency?

— Lots of options

CS 3204 Spring 2006 10/19/2006 20

P&

Heap Growth
0400000 Pintos loads the first process ...
@ - \P}ﬁ@Wen starts the first
O CESS.....
© -
€0000000_ free
o
8 used
0 —_
= Virginia CS 3204 Spring 2006 10/19/2006 21

mmap()

Pintos loads the first process ...

C0400000

en starts the first

1GB

C0000000_

[e) ummap (1)

free

o
® used
O —_
o ngjmamh CS 3204 Spring 2006 10/19/2006 22
pres]

