
1

CS 3204
Operating Systems

Godmar Back

Lecture 14

10/5/2006CS 3204 Spring 2006 2

Announcements

• Project 2 due Tuesday Oct 17, 11:59pm
• Midterm Oct 12

– Posted Sample Midterm
• Reading assignment:

– Read Chapter 5 & 19.

10/5/2006CS 3204 Spring 2006 3

Schedule

• Multiprogramming Basics (today)
• Sep 28 Thursday: Scheduling part 1
• Oct 3 Tuesday: (out of town) Guest lecture on

real-time scheduling
• Oct 5 Thursday + Oct 10 Tuesday:

– Wrap-up Scheduling, Monitors, & Deadlock
• Oct 10 Tuesday:

– Deadlock
• Oct 12: (out of town) Midterm

Scheduling

10/5/2006CS 3204 Spring 2006 5

Basic Scheduling: Summary
• FCFS: simple

– unfair to short jobs & poor I/O performance (convoy effect)
• RR: helps short jobs

– loses when jobs are equal length
• SPN: optimal average waiting time

– which, if ignoring blocking time, leads to optimal average
completion time

– unfair to long jobs
– requires knowing (or guessing) the future

• MLFQS: approximates SPN without knowing execution
time
– Can still be unfair to long jobs

10/5/2006CS 3204 Spring 2006 6

Proportional Share Scheduling
• Aka “Fair-Share” Scheduling
• None of algorithms discussed so far give direct

way of assigning CPU shares
– E.g., give 30% of CPU to process A, 70% to process

B
• Proportional Share algorithms assign “tickets” or

“shares” to processes
– Process get to use resource in proportion of their

shares to total number of shares
• Lottery Scheduling, Stride Scheduling

[Waldspurger 1995]

2

10/5/2006CS 3204 Spring 2006 7

Lottery Scheduling
• Idea: number tickets between 1…N

– every process gets pi tickets according to importance
– process 1 gets tickets [1… p1-1]
– process 2 gets tickets [p1… p2-1] and so on.

• Scheduling decision:
– Hold a lottery and draw ticket, holder gets to run for

next timeslice
• Nondeterministic algorithm
• Q.: what’s the complexity of this algorithm?
• Q.: what if a process is blocked?
• Q.: how to implement priority donation?

10/5/2006CS 3204 Spring 2006 8

Scheduling Summary

• OS must schedule all resources in a system
– CPU, Disk, Network, etc.

• CPU Scheduling affects indirectly scheduling of
other devices

• Goals:
– Minimizing latency
– Maximizing throughput
– Provide fairness

• In Practice: some theory, lots of tweaking

Concurrency & Synchronization

Continued

10/5/2006CS 3204 Spring 2006 10

Recap: Synchronization
• Covered:

– Critical Section Problem
– Implementation uniprocessor vs

multiprocessor
– Using locks to express mutual exclusion

constraint
• Now:

– Higher-level synchronization constructs that
can express precedence constraints

– Have already discussed semaphores

10/5/2006CS 3204 Spring 2006 11

Monitors
• A monitor combines a set of shared variables &

operations to access them
– Think of an enhanced C++ class with no public fields

• A monitor provides implicit synchronization (only
one thread can access private variables
simultaneously)
– Single lock is used to ensure all code associated with

monitor is within critical section
• A monitor provides a general signaling facility

– Wait/Signal pattern (similar to, but different from
semaphores)

– May declare & maintain multiple signaling queues

10/5/2006CS 3204 Spring 2006 12

Monitors (cont’d)
• Classic monitors are embedded in programming

language
– Invented by Hoare & Brinch-Hansen 1972/73
– First used in Mesa/Cedar System @ Xerox PARC

1978
– Limited version available in Java/C#

• (Classic) Monitors are safer than semaphores
– can’t forget to lock data – compiler checks this

• In contemporary C, monitors are a
synchronization pattern that is achieved using
locks & condition variables
– Must understand monitor abstraction to use it

3

10/5/2006CS 3204 Spring 2006 13

Infinite Buffer w/ Monitor
monitor buffer {

/* implied: struct lock mlock;*/
private:

char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
/* implied: struct lock mlock;*/

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{ /* try { lock_acquire(&mlock); */

buffer[head++] = i;
/* } finally {lock_release(&mlock);} */

}

buffer::consume()
{ /* try { lock_acquire(&mlock); */

return buffer[tail++];
/* } finally {lock_release(&mlock);} */

}

buffer::produce(item i)
{ /* try { lock_acquire(&mlock); */

buffer[head++] = i;
/* } finally {lock_release(&mlock);} */

}

buffer::consume()
{ /* try { lock_acquire(&mlock); */

return buffer[tail++];
/* } finally {lock_release(&mlock);} */

}

• Monitors provide implicit protection for their internal
variables
– Still need to add the signaling part

10/5/2006CS 3204 Spring 2006 14

Condition Variables
• Variables used by a monitor for signaling a

condition
– a general (programmer-defined) condition, not just

integer increment as with semaphores
• Monitor can have more than one condition

variable
• Three operations:

– Wait(): leave monitor, wait for condition to be
signaled, reenter monitor

– Signal(): signal one thread waiting on condition
– Broadcast(): signal all threads waiting on condition

10/5/2006CS 3204 Spring 2006 15

Bounded Buffer w/ Monitor
monitor buffer {

condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{

while ((tail+1–head)%CAPACITY==0)
slots_avail.wait();

buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

buffer::produce(item i)
{

while ((tail+1–head)%CAPACITY==0)
slots_avail.wait();

buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

10/5/2006CS 3204 Spring 2006 16

Bounded Buffer w/ Monitor
monitor buffer {

condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

monitor buffer {
condition items_avail;
condition slots_avail;

private:
char buffer[];
int head, tail;

public:
produce(item);
item consume();

}

buffer::produce(item i)
{

while ((tail+1–head)%CAPACITY==0)
slots_avail.wait();

buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

buffer::produce(item i)
{

while ((tail+1–head)%CAPACITY==0)
slots_avail.wait();

buffer[head++] = i;
items_avail.signal();

}
buffer::consume()
{

while (head == tail)
items_avail.wait();

item i = buffer[tail++];
slots_avail.signal();
return i;

}

Q1.: How is lost update problem
avoided?

Q2.: Why while() and not if()?

lock_release(&mlock);
block_on(items_avail);
lock_acquire(&mlock);

10/5/2006CS 3204 Spring 2006 17

Implementing Condition Variables

• State is just a queue of waiters:
– Wait(): adds current thread to (end of queue) & block
– Signal(): pick one thread from queue & unblock it

• Hoare-style Monitors: gives lock directly to waiter
• Mesa-style monitors (C, Pintos, Java): signaler keeps lock –

waiter gets READY, but can’t enter until signaler gives up
lock

– Broadcast(): unblock all threads
• Compare to semaphores:

– Condition variable signals are lost if nobody’s on the
queue (semaphore’s V() are remembered)

– Condition variable wait() always blocks (semaphore’s
P() may or may not block)

10/5/2006CS 3204 Spring 2006 18

Monitors in C
• POSIX Threads & Pintos
• No compiler support, must do it manually

– must declare locks & condition vars
– must call lock_acquire/lock_release when entering&leaving the

monitor
– must use cond_wait/cond_signal to wait for/signal condition

• Note: cond_wait(&c, &m) takes monitor lock as
parameter
– necessary so monitor can be left & reentered without losing

signals
• Pintos cond_signal() takes lock as well

– only as debugging help/assertion to check lock is held when
signaling

– pthread_cond_signal() does not

4

10/5/2006CS 3204 Spring 2006 19

Mesa vs Hoare Style

• Mesa-style:
– Cond_signal leaves signaling thread in monitor
– so must always use “while()” when checking loop

condition
– POSIX Threads & Pintos are Mesa-style (and so are

C# & Java)
• Alternative is “Hoare”-style where cond_signal

leads to exit from monitor and immediate reentry
of waiter
– Not commonly used

10/5/2006CS 3204 Spring 2006 20

Monitors in Java
• synchronized block

means
– enter monitor
– execute block
– leave monitor

• wait()/notify() use
condition variable
associated with receiver
– Every object in Java can

function as a condition var

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

class buffer {
private char buffer[];
private int head, tail;
public synchronized produce(item i) {

while (buffer_full())
this.wait();

buffer[head++] = i;
this.notify();

}
public synchronized item consume() {

while (buffer_empty())
this.wait();

buffer[tail++] = i;
this.notify();

}
}

10/5/2006CS 3204 Spring 2006 21

Per Brinch Hansen’s Criticism

• See Java’s Insecure Parallelism [Brinch Hansen
1999]

• Says Java abused concept of monitors because
Java does not require all accesses to shared
variables to be within monitors

• Why did designers of Java not follow his lead?
– Performance: compiler can’t easily decide if object is

local or not - conservatively, would have to make all
public methods synchronized – pay at least cost of
atomic instruction on entering every time

10/5/2006CS 3204 Spring 2006 22

Readers/Writer w/ Monitor
struct lock mlock; // protects rdrs & wrtrs
int readers = 0, writers = 0;
struct condvar canread, canwrite;
void read_lock_acquire() {

lock_acquire(&mlock);
while (writers > 0)

cond_wait(&canread, &mlock);
readers++;
lock_release(&mlock);

}
void read_lock_release() {

lock_acquire(&mlock);
if (--readers == 0)

cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

struct lock mlock; // protects rdrs & wrtrs
int readers = 0, writers = 0;
struct condvar canread, canwrite;
void read_lock_acquire() {

lock_acquire(&mlock);
while (writers > 0)

cond_wait(&canread, &mlock);
readers++;
lock_release(&mlock);

}
void read_lock_release() {

lock_acquire(&mlock);
if (--readers == 0)

cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

void write_lock_acquire() {
lock_acquire(&mlock);
while (readers > 0 || writers > 0)

cond_wait(&canwrite, &mlock);
writers++;
lock_release(&mlock);

}

void write_lock_release() {
lock_acquire(&mlock);
writers--;
ASSERT(writers == 0);
cond_signal(&canread, &mlock);
cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}

void write_lock_acquire() {
lock_acquire(&mlock);
while (readers > 0 || writers > 0)

cond_wait(&canwrite, &mlock);
writers++;
lock_release(&mlock);

}

void write_lock_release() {
lock_acquire(&mlock);
writers--;
ASSERT(writers == 0);
cond_signal(&canread, &mlock);
cond_signal(&canwrite, &mlock);
lock_release(&mlock);

}
Q.: does this implementation prevent starvation?Q.: does this implementation prevent starvation?

10/5/2006CS 3204 Spring 2006 23

Summary

• Semaphores & Monitors are both higher-
level constructs

• Monitors in C is just a programming
pattern that involves mutex+condition
variables

• When should you use which?

