
1

1

Pintos project 3:
Virtual Memory Management

Presented by

Xiaomo Liu
Acknowledgement: 

The slides are based on Yi Ma’s presentation

2

Outline

Virtual Memory Concept
Current Pintos memory management
Requirement

Lazy load
Stack growth
File – memory mapping
Swapping  

Suggestions
How to start 
Implementation order

3

Virtual Memory
Logical memory layout for every 
process 
Mapping to the real physical 
memory
What to do it? Paging!
Divide the process into small 
pieces (pages)– 4KB

4

Virtual Memory

Page 2

Page 0

Page 1

5

Pintos virtual memory

Executable on Disk

Virtual Linear Address Space
(page)

Physical Memory
(frame)

User executable uses virtual, 
space (0-3GB). They
are organized as segments.

PHY_BASE

0

paddr = kvaddr – PHY_BASE

Kernel space, 
space (3-4GB)

6

Pintos Virtual Memory

MMU translating linear address into page and offset

Find these vaddr.h
and pagedir.h/c for 

its interface.

Virtual Memory Management

Virtual Address Space

RAM Frames



2

7

Current Status (before the project 3)

Support multiprogramming
Page directory including its page tables for 
each process 
Load the entire data and code segment and 
stack into the memory before the execution 
(see load function in process.c).
Fixed stack (1 page) to each process

8

Requirement Overview

Lazy load
Don’t load any page initially. Load a page from executable 
when it is needed.

Stack growth
Allocate additional pages for stack as necessary.

File – memory mapping
Keep one copy of opened files in the memory. Keep track 
which memory maps to which file.

Swapping
Run out of frames, select a used frame and swap it out to 
the swap disk. Return it as a free frame.

9

Step 1: Frame table management

You need a frame table that keeps track all the 
frames of physical memory used by the user
processes.

Two approaches:
(1) Modify current allocator “palloc_get_page(PAL_USER)”
(2) Implement your own allocator on top of 
“palloc_get_page(PAL_USER)” without modifying it. 
(Recommended)
Have a look at “init.c, palloc.c” to get some ideas

Frame table is necessary for swapping

10

Step 2: Lazy Load

How to load executables? 
Allocate a frame and load a page of executable into memory

Before project 3: pintos will load all pages of executables into the 
physical memory.

After project 3: 
Load nothing except setup the stack at the beginning  

When executing the process, a page fault occurs and the page fault handler 
checks where the expected page is: in executable? in swap disk?

If in executable, you need to load the corresponding page from executable 

If in swap disk, you need to load the corresponding page from swap disk

Page fault handler need to resume the execution of the process after lazy 
load

11

Lazy load: supplemental page table

Functionalities
Your “s - page table” must be able to decide 
where to load executable and which corresponding 
page of executable
Your “s - page table ” must be able to decide how 
to get swap disk and which sectors of swap disk 
stores the corresponding page

Used by page fault handler
Populated in load_segment() and mmap() 
system call

12

Step 3: Stack Growth

Functionality
Before project 3: user stack is fixed size of 1 page, i.e. 4 KB
After project 3: user stack is allow to grow
Allocate additional pages for user stack as necessary

Implementation
If the user program exceeds the stack size, a page fault will 
happen
In page fault handler, you need to distinguish stack accesses 
from other accesses (It is a stack access if the fault address 
is greater or equal to esp – 32)
Catch the stack pointer—esp of interrupt frame
You can impose a absolute limit on stack size, STACK_SIZE



3

13

Step 4: Memory mapped files

Functionality
Keep a copy of an open file in memory
Keep it in user space

Memory   
mapped

14

Step 4: Memory mapped files

If file size is not multiple of PGSIZE—stick-out, cause partial 
page
Don’t map when: zero address or length, overlap, or console

Implementation
Use the “fd” to keep track of the open files of a process
Design two system calls: mapid_t mmap(fd, addr) and void 
munmap(mapid_t)
Design a data structure to keep track of these mappings
We don’t require that two processes that map the same file 
see the same data

15

Step 5: Swapping

Functionality
When no more free frame, evict a page from its 
frame and put a copy of into swap disk, if 
necessary, to get a free frame — swap out
When page fault handler finds a page is not 
memory but in swap disk, allocate a new frame 
and move it to memory  —swap in

Implementation
Need a method to keep track of which pages have 
been swapped and in which part of swap disk a 
page has been stored

16

Swapping: evict a frame

Choose a suitable page replacement 
algorithms, such as second chance algorithm, 
additional reference bit algorithm. (See  9.4 
of textbook)
Select a frame to swap out from frame table 

Use accessed/dirty bit in PTE

Send it to swap
Prevent change to page during swapping

Update PD & PT

17

Swapping: frame table

The main purpose of maintaining frame table is to 
efficiently evict a frame for swapping
Evict a frame usually need to access the “Accessed”
& “Dirty” bits of the page table entry of this frame
Remember this fact! It is very important to design 
your data structure of the frame table and its entry.
Because you need to somehow refer frame table 

entry back to the page table entry (PTE) so as to get 
the “Accessed” & “Dirty” bits.

18

Swapping: swap space management

You must be able to keep track of which swap slots 
have been used and which are not. 

A page is 4KB 
The Swap disk has sectors of 512B. (see disk.c/h)



4

19

Step 6: On process termination

Destroy your supplemental page table
Free your frames
Free your swap slots
Close all files. It means write back the 
dirty mmap pages

20

Important issues

Access user data
In project 2, need only verify user address.
In project 3, need handle actual access to 
the content of user memory: (must prevent) 
process B from evicting a page belonging 
to process A if A accesses this page during 
a system call.
Need protections: 

check address+ lock frame
read/write

unlock.

21

Important issues

Synchronization
Allow parallelism of multiple processes.

Page fault handling from multiple 
processes must be possible in parallel.

E.g., A’s page fault need I/O (swap, lazy 
load); B’s page fault need not (stack 
growth, all ‘0’ page), then B should go 
ahead.

22

Important issues

Data structure
Proper data structure will affect your 
design

Bit map, hash, list, and array

How many copies 

Make it simple

23

Design milestone
Decide the data structures

Data structure for supplemental page table entry, frame 
table entry, swap table entry
Data structure for the tables, Hash table? Array? List? 
Bitmap?
Should your tables be global or per-process?

Decide the operations for your data structures
How to populate the entries of your data structures
How to access the entries of your data structures
How many entries your data structure should have
When & how to free or destroy your data structure

Deadline
Oct 26th 11:59pm
No extra days

24

Suggested Order

Pre-study
Understand memory & virtual memory (Lecture slides and 
Ch 8 & 9 of your textbook) 
Understand the project documentation (including Appendix A: 
virtual address & hash table)
Understand the important source codes ( load() in process.c
and pagedir.h) 
Submit your design milestone 

Fix the bugs of project 2 and make it pass all the test 
cases
Frame table management:

Implement your frame table allocator.



5

25

Suggested Order

Supplemental page table management
Modifying load() function in process.c or designing a new one to 
populate your supplemental page table
Modify the page fault handler to implement the lazy load, i.e. load 
a page when page fault occurs 

Run the regression test cases from project2
Your kernel with lazy load should pass all the test cases at this 
point

Implement stack growth, memory mapping in parallel
Swapping 

Construct your data structure for swap slots management
Implement the page replacement algorithm
Implement “swap out” functionality
Implement “swap in” functionality 26

Other suggestions

Working in the VM directory
Create your page.h, frame.h, swap.h, as well as 
page.c, frame.c, swap.c in the /VM directory
Add your additional files to the makefile: 
Makefile.build

Keep an eye on project forum

27

End

Question?

Good luck!


