
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

1Concurrency

Operating Systems

Concurrency
critical section a section of code within a process that requires access to shared

resources, and which may not be executed while another process is in
a corresponding section of code

deadlock a situation in which two or more processes are unable to proceed
because each is waiting for one of the others to do something

livelock a situation in which two or more processes continuously change their
state in response to changes in the other processes without doing any
useful work

mutual exclusion the requirement that when one process is in a critical section that
accesses shared resources, no other process may be in a critical
section that accesses any of those shared resources

race condition a situation in which multiple threads or processes read and write a
shared data item and the final result depends on the relative timing of
their execution

starvation a situation in which a runnable process is overlooked indefinitely by
the scheduler; although it’s able to proceed, it is never chosen

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

2Concurrency

Operating Systems

A Simple Example
void echo()
{

chin = getchar();
chout = chin;
putchar(chout);

}

//Process P1 //Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

t
i
m
e

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

3Concurrency

Operating Systems

Operating System Concerns
Keep track of various processes

Allocate and deallocate resources

- processor time

- memory

- files

- I/O devices

Protect data and resources

Output of process must be independent of the speed of execution of other concurrent
processes

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

4Concurrency

Operating Systems

Process Interaction

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

5Concurrency

Operating Systems

Competition Among Processes for Resources
Mutual Exclusion

- critical sections

- only one program at a time is allowed in its critical section

- example: only one process at a time is allowed to send command to the printer

Deadlock

Starvation

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

6Concurrency

Operating Systems

Requirements for Mutual Exclusion
Only one process at a time is allowed in the critical section for a resource

A process that halts in its noncritical section must do so without interfering with other
processes

No deadlock or starvation

A process must not be delayed access to a critical section when there is no other process
using it

No assumptions are made about relative process speeds or number of processes

A process remains inside its critical section for a finite time only

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

7Concurrency

Operating Systems

Mutual Exclusion: Hardware Support
Interrupt Disabling

- a process runs until it invokes an operating system service or until it is interrupted

- disabling interrupts guarantees mutual exclusion

- processor is limited in its ability to interleave programs

- multiprocessing: disabling interrupts on one processor will not guarantee mutual exclusion

Special Machine Instructions
- performed in a single instruction cycle

- access to the memory location is blocked for any other instructions

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

8Concurrency

Operating Systems

Mutual Exclusion: Hardware Support
Test and Set Instruction

bool testset (int i) {
if (i == 0) {

i = 1;
return true;

}
else {

return false;
}

}

Executed atomically, effectively as a single machine instruction.

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

9Concurrency

Operating Systems

void exchange(int register, int memory) {
int temp;
temp = memory;
memory = register;
register = temp;

}

Mutual Exclusion: Hardware Support
Exchange Instruction

Executed atomically, effectively as a single machine instruction.

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

10Concurrency

Operating Systems

Mutual Exclusion

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

11Concurrency

Operating Systems

Mutual Exclusion

Using test-and-set Using exchange

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

12Concurrency

Operating Systems

Mutual Exclusion via Machine Instructions
Advantages

- applicable to any number of processes on either a single processor or multiple processors
sharing main memory

- it is simple and therefore easy to verify

- it can be used to support multiple critical sections

Disadvantages
- busy-waiting consumes processor time

- starvation is possible when a process leaves a critical section and more than one process is
waiting

- deadlock: if a low priority process has the critical region and a higher priority process needs,
the higher priority process will obtain the processor to wait for the critical region

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

13Concurrency

Operating Systems

Semaphores
Special variable called a semaphore is used for signaling Dijkstra

Semaphore is a variable that has an integer value
- may be initialized to a nonnegative number

- wait operation decrements the semaphore value

- signal operation increments semaphore value

- also has a process queue and a flag

Semaphore can be implemented using machine instruction test-and-set, or using
interrupts.

If a process is waiting for a signal, it is suspended until that signal is sent

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

14Concurrency

Operating Systems

Semaphore Primitives

struct semaphore {
int Count;
queue Q;

}

void semWait(semaphore s) {
s.Count--;
if (s.Count < 0) {

// place caller in Q
// block caller

}
}

void semSignal(semaphore s) {
s.Count++;
if (s.Count <= 0) {

// dequeue proc P from Q
// place P on ready list

}
}

Semaphore variable contains a counter and
a process queue.

When a process calls semWait(), the
semaphore’s counter is decremented.

If the counter is now negative, the caller is
blocked.

The initial value given to the counter
controls how many processes are allowed
“past” the semaphore at once.

When a process calls semSignal(), the
semaphore’s counter is incremented.

If the counter is not positive, there must be
at least one process blocked on the
semaphore.

So, a blocked process is dequeued and
allowed to “pass” the semaphore.

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

15Concurrency

Operating Systems

Binary Semaphore Primitives

struct binary_semaphore {
enum {ZERO, ONE} Value;
queue Q;

}

void semWaitB(binary_semaphore s) {
if (s.Value == ONE) {

s.Value = ZERO;
else {

// place caller in Q
// block caller

}
} void semSignalB(binary_semaphore s) {

if (s.Q.isempty()) {
s.Value = ONE;

else {
// dequeue proc P from Q
// place P on ready list

}
}

Binary semaphores can only be
0 or 1.

That means they would achieve
one-at-a-time mutual exclusion.

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

16Concurrency

Operating Systems

Implementing a Semaphore

struct semaphore {
int Count, Flag;
queue Q;

}

The basic problem with implementing a
semaphore is that only one process can be
allowed to execute the body of
semWait() or semSignal() at a
time.

One way to do this is to use the hardware-
level test-and-set instruction described
earlier.

void semWait(semaphore s) {
while (!testset(s.flag));
s.Count--;
if (s.Count < 0) {

// place caller in Q
// block caller

}
s.Flag = 0;

}

void semSignal(semaphore s) {
while (!testset(s.flag));
s.Count++;
if (s.Count <= 0) {

// dequeue proc P from Q
// place P on ready list

}
s.Flag = 0;

}

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

17Concurrency

Operating Systems

Mutual Exclusion Using Semaphores

const int n = ...; // set # of processes
semaphore s = 1;

void P(int i) {
while (true) {

semWait(s);
// critical section
semSignal(s);
// non-critical section

}
}

int main() {
parbegin(P(1), P(2), ..., P(n)); // spawn threads running P()

}

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

18Concurrency

Operating Systems

Producer/Consumer Problem
One or more producers are generating data and placing these in a buffer

A single consumer is taking items out of the buffer one at time

Only one producer or consumer may access the buffer at any one time

producer:
while (true) {

/* produce item v */
b[in] = v;
in++;

}

consumer:
while (true) {

while (in <= out)
/*do nothing */;

w = b[out];
out++;
/* consume item w */

}

shared
buffer

The buffer may be finite (bounded) or infinite.

Usually modeled as array-like; circular if finite.

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

19Concurrency

Operating Systems

PC Problem with Circular Buffer
producer:
while (true) {

/* produce item v */
while ((in + 1) % n == out);
b[in] = v;
in = (in + 1) % n

}

consumer:
while (true) {

while (in == out)
/* do nothing */;

w = b[out];
out = (out + 1) % n;
/* consume item w */

}

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

20Concurrency

Operating Systems

Infinite-buffer PC with Semaphores

void producer() {
while (true) {

produce();
semWaitB(s);
append();
n++;
if (n == 1)

semSignalB(delay);
semSignalB(s);

}
}

void consumer() {
semWaitB(delay);
while (true) {

semWaitB(s);
take();
n--;
semSignalB(s);
consume();
if (n == 0)

semWaitB(delay);
}

}

int n;
binary_semaphore s = 1;
binary_semaphore delay = 0;

int main() {
n = 0;
parbegin(producer, consumer);

}

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

21Concurrency

Operating Systems

Hypothetical Trace of Execution

111semSignalB(s)13

110if (n == 1)
semSignalB(delay)

12

010n++11

000semWaitB(s)10

001semSignalB(s)9

000n--8

010semWaitB(s)7

011semWaitB(delay)6

111semSignalB(s)5

110if (n == 1)
semSignalB(delay)

4

010n++3

000semWaitB(s)2

0011

delaynsConsumerProducer

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

22Concurrency

Operating Systems

Hypothetical Trace Continued

0-11semSignalB(s)21

0-10n--20

000semWaitB(s)19

001if (n == 0)
semWaitB(delay)

18

101semSignalB(s)17

100n--16

110semWaitB(s)15

111if (n == 0)
semWaitB(delay)

14

111semSignalB(s)13

delaynsConsumerProducer

A flaw in the given “solution” is exposed by the potential interaction here.

The Consumer should have called semWaitB(delay) after it exhausted the buffer at line 8,
which would block the Consumer.

But, due to a context switch, the Producer was able to increment n first, and that prevented
the Consumer from correctly blocking itself.

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

23Concurrency

Operating Systems

Infinite-buffer PC with Semaphores

void producer() {
while (true) {

produce();
semWaitB(s);
append();
n++;
if (n == 1)

semSignalB(delay);
semSignalB(s);

}
}

void consumer() {
semWaitB(delay);
while (true) {

semWaitB(s);
take();
n--;
if (n == 0)

semWaitB(delay);
semSignalB(s);
consume();

}
}

int n;
binary_semaphore s = 1;
binary_semaphore delay = 0;

int main() {
n = 0;
parbegin(producer, consumer);

}

What about this… just move the
conditional statement inside the
consumer’s critical section?

Computer Science Dept Va Tech January 2005 ©2005 McQuain WD

24Concurrency

Operating Systems

Infinite-buffer PC with Semaphores

void producer() {
while (true) {

produce();
semWaitB(s);
append();
n++;
if (n == 1)

semSignalB(delay);
semSignalB(s);

}
}

void consumer() {
int m;
semWaitB(delay);
while (true) {

semWaitB(s);
take();
n--;
m = n;
semSignalB(s);
consume();
if (m == 0)

semWaitB(delay);
}

}

int n;
binary_semaphore s = 1;
binary_semaphore delay = 0;

int main() {
n = 0;
parbegin(producer, consumer);

}

