
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

1Scheduling

Operating Systems

Model of Process Execution

Ready
List

Ready
List DispatcherDispatcher CPUCPU

Resource
Manager

Resource
Manager

ResourcesResources

Preemption or voluntary yield

Allocate Request

DoneNew
Process job

job
job

job
job

“Ready”
“Running”

“Blocked”

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

2Scheduling

Operating Systems

The Scheduler

Ready Process

EnqueuerEnqueuer Ready
List

Ready
List

DispatcherDispatcher Context
Switcher
Context
Switcher

Process
Descriptor
Process

Descriptor

CPUCPU

From other states

Running Process

…saves the contents of all CPU registers for
the thread being removed from the CPU.

…invoked after the previous thread has been
removed from the CPU (context switch TO
the dispatcher). Selects one of the ready
threads and allocates the CPU to that thread
(another context switch).

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

3Scheduling

Operating Systems

Process Switching

CPU

PCB for selected
ready process

PCB for
running process

Interrupt from quantum timer
triggers context switch.

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

4Scheduling

Operating Systems

Interrupt Processing

Process A

Interrupt
handler

Process B

A's execution context is
backed up to temporary
location in memory

Execution context of
next process (could be
A) is loaded and it
begins execution

Selected interrupt
handles services the
interrupt

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

5Scheduling

Operating Systems

Process Context

R1
R2

Rn

. . .

Status
Registers

Functional Unit

Left Operand

Right Operand

Result ALU

PC

IRCtl Unit

Context is saved in the PCB for the process.

Saving the context for “old” process might take about 2 microseconds.

Loading context for “next” process takes similar amount of time.

Execution of the dispatcher
is not free.

So total time for performing
a process switch might be
4+ microseconds.

1GHz processor might
execute 2000 register
instructions in time for a
process switch… overhead!

Duplicate register sets for
user and kernel mode exec
can reduce cost by ½.

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

6Scheduling

Operating Systems

Invoking the Scheduler
Need a mechanism to call the scheduler:

Voluntary call
- process blocks itself
- calls the scheduler

Involuntary call
- external force (interrupt) blocks

the process
- calls the scheduler

Every process periodically yields
to the scheduler

Relies on correct process behavior
- malicious
- accidental

Prone to disruption by ill-behaved processes

Interval timer
- device to produce a periodic

interrupt
- programmable period

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

7Scheduling

Operating Systems

Voluntary CPU Sharing

// Machine instruction yield() saves contents of PC at r
// and loads the PC with contents at s

yield(r, s) {

memory[r] = PC;
PC = memory[s];

}

Currently running process P1 calls yield() to cede the processor to process P2:

Address r will lie within the PCB for P1 (calling process) and can be determined
implicitly at runtime.

Address s can be determined similarly if the identity of P2 is known.

Alternative model would place responsibility for choosing P2 on the scheduler.

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

8Scheduling

Operating Systems

Involuntary CPU Sharing
Interval timer device handler

- keeps an in-memory clock up-to-date (see Chap 4 lab exercise)
- invokes the scheduler

IntervalTimerHandler() {

Time++; // update the clock
TimeToSchedule--;
if(TimeToSchedule <= 0) {

<invoke scheduler>;
TimeToSchedule = TimeSlice;

}
}

Involuntary CPU sharing – timer interrupts
- time quantum determined by interval timer – usually fixed size for every process

using the system
- sometimes called the time slice length

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

9Scheduling

Operating Systems

Choosing a Process to Run

Mechanism never changes

Strategy = policy the dispatcher uses to select a process from the ready list

Different policies for different requirements

Ready Process

EnqueueEnqueue Ready
List

Ready
List

DispatchDispatch Context
Switch

Context
Switch

Process
Descriptor
Process

Descriptor

CPUCPU

Running Process

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

10Scheduling

Operating Systems

Policy Considerations

Policy can control/influence:
- CPU utilization
- average time a process waits for service
- average amount of time to complete a job

Could strive for any of:
- equitability (sounds good, vague)
- favor very short or long jobs (throughput vs response time)
- meet priority requirements (e.g., process control systems)
- meet deadlines (e.g., real-time systems)

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

11Scheduling

Operating Systems

Optimal Scheduling

The service time τ(p) for a process is the amount of time the process requires in
the running state (using the CPU) before it is completed.

Suppose the scheduler knows the τ(pi) for each process pi.

Policy can optimize on any criteria, e.g.,
- CPU utilization
- waiting time
- deadline

To find an optimal schedule:
- have a finite, fixed # of pi

- know τ(pi) for each pi
- enumerate all schedules, then choose the best

Issues…?

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

12Scheduling

Operating Systems

However ...

The τ(pi) are almost certainly just estimates (at best).

General algorithm to choose optimal schedule is O(n2)

Other processes may arrive while these processes are being serviced

Usually, optimal scheduling is only a theoretical benchmark – scheduling policies
try to approximate an optimal schedule

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

13Scheduling

Operating Systems

Model of Process Execution

Ready
List

Ready
List SchedulerScheduler CPUCPU

Resource
Manager

Resource
Manager

ResourcesResources

Preemption or voluntary yield

Allocate Request

DoneNew
Process job

job
job

job
job

“Ready”
“Running”

“Blocked”

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

14Scheduling

Operating Systems

Talking About Scheduling ...

Let P = {pi | 0 ≤ i < n} = set of processes in system

Let S(pi) ∈ {running, ready, blocked} (the process state)

Let τ(pi) = time process needs to be in running state (the service time)

Let W(pi) = Time pi is in ready state before first transition to running (wait time)

Let TTRnd(pi) = Time from pi first enter ready to last exit run (turnaround time)

Batch Throughput rate = inverse of avg TTRnd

Timesharing response time = W(pi) is of most interest to interactive users

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

15Scheduling

Operating Systems

Simplified, but still provides analysis results
Easy to analyze performance
No issue of voluntary/involuntary sharing

Ready
List

Ready
List SchedulerScheduler CPUCPU

Resource
Manager

Resource
Manager

ResourcesResources

Allocate Request

DoneNew
Process job

job
job

job
job

“Ready”
“Running”

“Blocked”

Preemption or voluntary yield

Simplified Model

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

16Scheduling

Operating Systems

Estimating CPU Utilization

Ready
List

Ready
List SchedulerScheduler CPUCPU DoneNew

Process

Systemλ pi per second Each pi uses 1/ µ units of
the CPU, on average

Let λ = the average rate at
which processes are placed in
the Ready List, arrival rate

Let µ = the average service rate
∴ 1/ µ = the average τ(pi)

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

17Scheduling

Operating Systems

Ready
List

Ready
List SchedulerScheduler CPUCPU DoneNew

Process

Let λ = the average rate at
which processes are placed in
the Ready List, arrival rate

Let µ = the average service rate
∴ 1/ µ = the average τ(pi)

Let ρ = the fraction of the time that the CPU is expected to be busy. Then:

ρ = # pi that arrive per unit time × avg time each spends on CPU

ρ = λ * 1/ µ = λ/µ

Note: must have λ < µ (i.e., ρ < 1)
What if ρ approaches 1?

Estimating CPU Utilization

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

18Scheduling

Operating Systems

Nonpreemptive Schedulers

We can try to use the simplified scheduling model.

Only consider running and ready states

Ignores time in blocked state:
- “New process created when it enters ready state”
- “Process is destroyed when it enters blocked state”
- Really just looking at “small phases” of a process

Ready
List

Ready
List SchedulerScheduler CPUCPU DoneNew

Process

Blocked or preempted processes

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

19Scheduling

Operating Systems

FCFS Average Wait Time

i τ(pi)
0 350
1 125
2 475
3 250
4 75

TTRnd(p0) = τ(p0) = 350
TTRnd(p1) = (τ(p1) +TTRnd(p0)) = 125+350 = 475
TTRnd(p2) = (τ(p2) +TTRnd(p1)) = 475+475 = 950
TTRnd(p3) = (τ(p3) +TTRnd(p2)) = 250+950 = 1200
TTRnd(p4) = (τ(p4) +TTRnd(p3)) = 75+1200 = 1275

W(p0) = 0
W(p1) = TTRnd(p0) = 350
W(p2) = TTRnd(p1) = 475
W(p3) = TTRnd(p2) = 950
W(p4) = TTRnd(p3) = 1200

Wavg = (0+350+475+950+1200)/5 = 2974/5 = 595

p0 p1 p2 p3 p4

127512009504753500

Easy to implement
Ignores service time, etc
Not a great performer

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

20Scheduling

Operating Systems

Predicting Wait Time in FCFS

In FCFS, when a process arrives, all in ready list will be processed before this
job

Let µ be the service rate

Let L be the ready list length

Wavg(p) = L*1/µ + 0.5∗ 1/µ = L/µ+1/(2µ)

Compare predicted wait with actual in earlier examples

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

21Scheduling

Operating Systems

i τ(pi)
0 350
1 125
2 475
3 250
4 75

TTRnd(p0) = τ(p0)+τ(p3)+τ(p1)+τ(p4) = 350+250+125+75 = 800
TTRnd(p1) = τ(p1)+τ(p4) = 125+75 = 200
TTRnd(p2) = τ(p2)+τ(p0)+τ(p3)+τ(p1)+τ(p4) = 475+350+250+125+75

= 1275
TTRnd(p3) = τ(p3)+τ(p1)+τ(p4) = 250+125+75 = 450
TTRnd(p4) = τ(p4) = 75

W(p0) = 450
W(p1) = 75
W(p2) = 800

W(p3) = 200
W(p4) = 0

Wavg = (450+75+800+200+0)/5 = 1525/5 = 305

p0p1 p2p3p4

1275800450200750

Minimizes wait time
May starve large jobs
Must know service times

Shortest Job Next

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

22Scheduling

Operating Systems

i τ(pi) Pri
0 350 5
1 125 2
2 475 3
3 250 1
4 75 4

TTRnd(p0) = τ(p0)+τ(p4)+τ(p2)+τ(p1))+τ(p3) = 350+75+475+125+250
= 1275

TTRnd(p1) = τ(p1)+τ(p3) = 125+250 = 375
TTRnd(p2) = τ(p2)+τ(p1)+τ(p3) = 475+125+250 = 850
TTRnd(p3) = τ(p3) = 250
TTRnd(p4) = τ(p4)+ τ(p2)+ τ(p1)+τ(p3) = 75+475+125+250 = 925

W(p0) = 925
W(p1) = 250
W(p2) = 375

W(p3) = 0
W(p4) = 850

Wavg = (925+250+375+0+850)/5 = 2400/5 = 480

p0p1 p2p3 p4

12759258503752500

Reflects importance of external use
May cause starvation
Can address starvation with aging

Priority Scheduling

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

23Scheduling

Operating Systems

i τ(pi) Deadline
0 350 575
1 125 550
2 475 1050
3 250 (none)
4 75 200

Allocates service by deadline
May not be feasible

p0p1 p2 p3p4

1275
1050550200

0

p0p1 p2 p3p4

p0 p1 p2 p3p4

575

Deadline Scheduling

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

24Scheduling

Operating Systems

Preemptive Schedulers

Ready
List

Ready
List SchedulerScheduler CPUCPU

Preemption

DoneNew
Process

Highest priority process is guaranteed to be running at all times, or at least at the
beginning of a time slice

Dominant form of contemporary scheduling

But complex to build and analyze

CS 3204 Operating Systems

©William D McQuain, January 2005 13

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

25Scheduling

Operating Systems

i τ(pi)
0 350
1 125
2 475
3 250
4 75

W(p0) = 0
W(p1) = 50
W(p2) = 100
W(p3) = 150
W(p4) = 200p0

2001000
p4p3p2p1

p0

3002001000
p0p4p3p2p1

p0

4754003002001000
p4p0p4p3p2p1 p1 p2 p3

TTRnd(p4) = 475

p4 finishes in the middle of its quantum.

Round Robin (TQ = 50)

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

26Scheduling

Operating Systems

i τ(pi)
0 350
1 125
2 475
3 250
4 75

p0

4754003002001000
p4 p1p0p4p3p2p1 p1 p2 p3 p0

550

p3p2

550 650
p0 p3p2 p0 p3p2 p0 p2 p0

750 850 950 1050

p0 p2 p2 p2 p2

1050 1150 1250 1275 TTRnd(p0) = 1100
TTRnd(p1) = 550
TTRnd(p2) = 1275
TTRnd(p3) = 950
TTRnd(p4) = 475

Wavg = (0+50+100+150+200)/5 = 500/5 = 100

TTRnd_avg = (1100+550+1275+950+475)/5 = 4350/5 = 870

Round Robin (TQ = 50)

CS 3204 Operating Systems

©William D McQuain, January 2005 14

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

27Scheduling

Operating Systems

i τ(pi)
0 350
1 125
2 475
3 250
4 75

TTRnd(p0) = 1320
TTRnd(p1) = 660
TTRnd(p2) = 1535
TTRnd(p3) = 1140
TTRnd(p4) = 565

W(p0) = 0
W(p1) = 60
W(p2) = 120
W(p3) = 180
W(p4) = 240

Wavg = (0+60+120+180+240)/5 = 600/5 = 120

Overhead must be considered

TTRnd_avg = (1320+660+1535+1140+565)/5 = 5220/5 = 1044

540480360240120

0

575 790635 670
p0 p4 p1p0p4p3p2p1 p1 p2 p3 p0 p3p2

p0 p3p2 p0 p3p2 p0 p2 p0 p2 p2 p2 p2

910 1030 1150 1270 1390 1510 1535790

Round Robin with Overhead = 10 (TQ = 50)

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

28Scheduling

Operating Systems

Multi-Level Queues

Ready List0
Ready List0

Ready List1
Ready List1

Ready List2
Ready List2

Ready List3
Ready List3

SchedulerScheduler CPUCPU

Preemption or voluntary yield

DoneNew
Process

Each process at level i gets to run before any
process at level j does.

Within a level, use another policy, e.g. RR

CS 3204 Operating Systems

©William D McQuain, January 2005 15

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

29Scheduling

Operating Systems

Multilevel Feedback Queues
Different processes have different needs

- short I/O-bound interactive processes should generally run before processor-bound batch
processes

- behavior patterns are not immediately obvious to the scheduler, but can be deduced from
process behavior

Multilevel feedback queues
- arriving processes enter the highest-level queue (or based on initial priority) and execute with

higher priority than processes in lower queues
- long processes repeatedly descend into lower levels

- gives short processes and I/O-bound processes higher priority
- long processes will run when short and I/O-bound processes terminate

- processes in each queue are serviced using round-robin
- process entering a higher-level queue preempt running processes

Algorithm must respond to changes in environment
- move processes to different queues as they alternate between interactive and batch behavior
- adaptive mechanisms incur overhead that often is offset by increased sensitivity to process

behavior

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

30Scheduling

Operating Systems

Involuntary CPU sharing -- timer interrupts
- time quantum determined by interval timer -- usually fixed for every process using

the system
- sometimes called the time slice length

Priority-based process (job) selection
- select the highest priority process
- priority reflects policy

With preemption

Usually a variant of multi-level queues

Contemporary Scheduling

CS 3204 Operating Systems

©William D McQuain, January 2005 16

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

31Scheduling

Operating Systems

Contemporary Scheduling
BSD 4.4 Scheduling

- Involuntary CPU Sharing
- Preemptive algorithms

- 32 Multi-Level Queues
- queues 0-7 are reserved for system functions
- queues 8-31 are for user space functions
- nice influences (but does not dictate) queue level

Windows NT/2K Scheduling
- Involuntary CPU sharing across threads
- Preemptive algorithms
- 32 multi-level queues

- highest 16 levels are “real-time”
- next lower 15 are for system/user threads

- range determined by process base priority
- lowest level is for the idle thread

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

32Scheduling

Operating Systems

Scheduling Criteria
Processor-bound processes

- use all available processor time

I/O-bound processes
- generates an I/O request quickly and relinquishes processor

Batch processes
- contains work to be performed with no user interaction

Interactive processes
- requires frequent user input, rapid response times are important

CS 3204 Operating Systems

©William D McQuain, January 2005 17

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

33Scheduling

Operating Systems

Real-Time Scheduling
Static real-time scheduling

- does not adjust priorities over time
- low overhead
- suitable for systems where conditions rarely change

- hard real-time schedulers
- rate-monotonic (RM) scheduling
- process priority increases monotonically with the frequency with which it must execute

- deadline RM scheduling
- useful for a process that has a deadline that is not equal to its period

Dynamic real-time scheduling
- adjusts priorities in response to changing conditions
- can incur significant overhead, but must ensure that the overhead does not result in increased

missed deadlines
- priorities are usually based on processes’ deadlines
- earliest-deadline-first (EDF)

- preemptive, always dispatch the process with the earliest deadline
- minimum-laxity-first

- similar to EDF, but bases priority on laxity, which is based on the process’s deadline and its remaining
run-time-to-completion

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

34Scheduling

Operating Systems

Scheduling Levels
Short-term scheduling

- the decision as to which available process will be assigned the processor next
- known as the dispatcher
- executes most frequently
- invoked when an event occurs (clock interrupts, I/O interrupts, operating system calls, signals)

Medium-term scheduling
- the decision to add to the number of processes that are partially or fully contending for the

processor
- part of the swapping function
- based on the need to manage the degree of multiprogramming

Long-term scheduling
- the decision to add to the pool of processes which will eventually be executed
- determines which programs are admitted to the system for processing
- controls the degree of multiprogramming
- more processes, smaller percentage of time each process is executed

CS 3204 Operating Systems

©William D McQuain, January 2005 18

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

35Scheduling

Operating Systems

Scheduling Levels in the State Diagram

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

36Scheduling

Operating Systems

Scheduling Criteria

User-oriented, performance related criteria

Turnaround time
- interval of time between the submission of a process and its completion
- appropriate measure for a batch job

Response time
- time from the submission of an interactive request until the response begins to be received
- better measure than turnaround for an interactive process
- goal is low response time and maximization of the number of interactive users receiving

acceptable response time

Deadlines
- only applicable when completion deadlines can be specified
- subordinate other goals to that of maximizing the percentage of deadlines met

CS 3204 Operating Systems

©William D McQuain, January 2005 19

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

37Scheduling

Operating Systems

User-oriented, not performance related

Predictability
- a given job should run in about the same amount of time regardless of the system load
- wide variation in response time or turnaround time is distracting to interactive users

Scheduling Criteria

System-oriented, performance related

Throughput
- the number of processes completed per unit time
- measure of how much work is being performed
- clearly depends upon the average service time, but also on scheduling policies
Processor utilization
- percentage of time that the processor is busy
- must be considered in relation to the number of processes that are ready but not running
- less important on real-time systems

Computer Science Dept Va Tech September 2005 ©2005 McQuain WD

38Scheduling

Operating Systems

Scheduling Criteria

System-oriented, not performance related
Fairness
- processes should be treated the same, and no process should suffer starvation, in the absence of

contradictory guidance from the user or other system components

Enforcing priorities
- when priorities are used, the scheduling policy should favor higher-priority processes

Balancing resources
- system resources should be kept busy, if there is sufficient demand to do so
- processes that will underutilize stresses resources should be favored
- relates also to medium- and long-term scheduling

