Deadlock Deadlock 1

Permanent blocking of a set of processes that either compete for system resources or
communicate with each other

No efficient solution

Involve conflicting needs for resources by two or more processes

c b[ﬁ][n]

______ A -
. -
[
:ﬁ
i
1
[
1
i
1
Operating Systems
No Deadlock Deadlock 2
Progress
of Q
A
Release
A
4
>
A
Reles
Required e;m
GetA Fand O
want B
B
Required
5
GetB I
S,
>
. Progress
" ofP
GetA ReleaseA GetB ReleaseB
% = both P and Q want resource A AReqm'red B Requil‘ed
_ . .)y = possible progress path of Pand Q.
By =oote Pant Qv esoues B Horizontal portion of path indicates P s execnting and Q s waiting

Vertical portion of path indicates Q is execufing and P is waiting.

Operating Systems

Deadlock Deadlock 3

Progress
ofQ 4
Release
A
’1_ Release
Required B
GetA
B
Required
Y \ 5
GetB 3 I
LI
>
Progress
> P
GetA GetB ReleaseA Release B o
% = both Pand Q want resource A
) L-W\J
& =Toth Pand Q want resource B Reqllimd \—'-W
|:| = deadlock-inevitable region B Required
sl = possible progress path of P and Q.
Horizontzl portion of path indicates P is executing and Q is waiting
Vertical portion of path indicates Q is executing and P is waiting.
Operating Systems
Reusable Resources Deadlock

Used by only one process at a time and not depleted by that use
Processes obtain resources that they later release for reuse by other processes

Processors, I/0 channels, main and secondary memory, devices, and data structures such
as files, databases, and semaphores

Deadlock occurs if each process holds one resource and requests the other

Process P Process
Step Action Step Action
D, Fequest (D} [Request {T)
m Lock (D) q, Lock (T)
P, Request (T) a0 Request (D)
P, |Lock(T) g |Leck(D)
m Perform function g, |Perform function
P: Unlock (D) 0, Unlock (T)
i Unlock (T) 0, |Unlock (D)

Operating Systems

Another Example of Deadlock Deadlock 5

Space is available for allocation of 200KiB, and the following sequence of events occur

P1 P2
Request 80 KiB; Request 70 KiB;
Request 60 KiB; Request 80 KiB;

Deadlock occurs if both processes progress to their second request, assuming the
processes block until their requests can be granted.

Operating Systems

Consumable Resources Deadlock 6

Created (produced) and destroyed (consumed)

Interrupts, signals, messages, and information in I/O buffers
Deadlock may occur if a Receive message is blocking

May take a rare combination of events to cause deadlock

Deadlock occurs if receive is blocking:

P1 P2
Receive(P2); Receive(P1);

Send(P2, M1); Send(P1, M2);

Operating Systems

Resource Allocation Graphs Deadlock 7

Directed graph that depicts a state of the system of resources and processes

P —" >0 Ra P ——2 e Ra
(a) Resouce is requested (b) Resource is held
Ra Ra
i\ L] .\I
4 A %
_‘xf“ (7 & i Q‘?&
- ¥
Pl] Pl P

(&) Cireular wait () Mo deadlock

Operating Systems

Conditions for Deadlock Deadlock 8

Mutual exclusion

Only one process may use a resource at a time
Hold-and-wait

A process may hold allocated resources while awaiting assignment of others
No preemption

No resource can be forcibly removed form a process holding it

Circular wait

A closed chain of processes exists, such that each process holds at least one resource
needed by the next process in the chain

Rb

(¢} Circular wait

Operating Systems

RAG with Deadlock Deadlock 9
)
____________ Smm
00 E
§
i Pl 3) P P4
Ra Rb Re ‘ Rd
Operating Systems
Possibility of Deadlock Deadlock 10

Mutual Exclusion

No preemption

Hold and wait

Circular wait

Operating Systems

Deadlock Prevention Deadlock 11

Goal
Design the system so that deadlock is logically impossible

Mutual Exclusion
Must be supported by the operating system

Hold and Wait
Require a process request all of its required resources at one time?

No Preemption
Process must release resource and request again?

Operating system may preempt a process to require it releases its resources?

Circular Wait

Define a linear ordering of resource types?

Operating Systems

Deadlock Avoidance Deadlock 12

Goal
Deny requests that might lead to the occurrence of deadlock

A decision is made dynamically whether the current resource allocation request will, if
granted, potentially lead to a deadlock

Requires knowledge of future process request

Do not start a process if its demands Do not grant an incremental resource
might lead to deadlock request to a process if this
allocation might lead to deadlock

Operating Systems

Resource Allocation Denial Deadlock 13

Referred to as Dijkstra’s Banker’s Algorithm

State of the system is the current allocation of resources to process

Safe state is where there is at least one sequence that does not result in deadlock
Unsafe state is a state that is not safe

Rl R2 R} R4 B3 Rl R E RL RS Rl R RI R4 BR5
prlfof1]ofo]1 mf1Jo[1[1]o0 [2]1J1]2]1]
2|0 0 1 0 1 2| 1 1 0 0| 0 Resolirce vector
P3| 0 00 0 1 Fi| 0 0|0 1 0
Pi| 1 0 1 0 1 F4| 0 0|0 0 (0 Rl R2 R3 R4 ER5

Request matrix Q Allocation matrix A | 0 | 0 | 0 | 0 | 1 |
Available vector
Operating Systems
Determination of a Safe State Deadlock 14
Initial state:
Rl R2 R3 Rl R2 R3 Rl R2 R3
Pl 3 o 2 P1 1 0 0 Pl 2 2 2
P2 6 1 3 P2 6 1 2) 0 0 1
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0
Clam matrx C Allocation matrix A C-A
RI R2 R3 RI R2 R3
L9 T3 1 6 | Lo [¢t [1]
Resource vector R Available vector V
(a) Initial state
P2 runs to completion:
R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 1 0 0 P1 2 2 2

P2 0 0 0 P2 0 0 0 P2 0 0 0

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 1 2 0

Claim matrix C Allocation matrix A C-4A
R1 R2 R3 R1 R2 R3
L [3 [5s | Lo [21 3 |
Resource vector R Available vector V

(b) P2 runs to completion

Operating Systems

Determination of a Safe State Deadlock 15

P1 runs to completion:

R1 R2 R3 R1 R2 R3 R1 R2 R3
Pl 0 0 0 Pl 0 0 0 Pl 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
[® 3 6 7 2 3
Resource vector R Available vector V
(c) P1 runs to completion
P3 runs to completion:
Rl R2 R3 Ri R2 R3 Rl R2 R3
Pl 0 0 0 Pl 0 0 0 Pl 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 0 0 0 P3 0 0 0 P3 0 0 0
P4 4 2 2 P4 0 0 2 P4] 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 Rl R2 R3
L T 51 6] Lo [3 1T 4]
Resource vector R Available vector V
(d) P3 runs to completion
Operating Systems
Determination of an Unsafe State Deadlock 16
R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2
P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 A 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
(e[[l]:
Resource vector R Available vector V
(a) Initial state
R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 Ex P1 2 0 1 P1 1 2 1
P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 X B P4 0 0 2 P4 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
el sle] [o[r]1r]
Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3
Operating Systems

Deadlock Avoidance Deadlock 17

Maximum resource requirement must be stated in advance

Processes under consideration must be independent; no synchronization requirements
There must be a fixed number of resources to allocate

No process may exit while holding resources

Rl R2 R3 R: RS Rl R2 R3 R4 R5 Rl R2 R3 R4 R5
mfo[1]o]ol1 {1 Jo]1]1]o [2]2]1]2]1]
P2 0 0 1 0 1 P2 1 1 0 0 0 Resource vector
P3 t t t £ t P3 0 0 0 1 0
P4 1 0 1 0 1 P4 0 0 0 0 0 R1 R2 R3 R4 RS

Request matrix Q Allocation matrix A | 0 ‘ 0 ‘ 0 ‘ n ‘ 1 ‘

Available vector

Figure 6.10 Example for Deadlock Detection

Operating Systems

Strategies once Deadlock Detected Deadlock 18

Abort all deadlocked processes

Back up each deadlocked process to some previously defined checkpoint, and restart all
process

Original deadlock may occur
Successively abort deadlocked processes until deadlock no longer exists

Successively preempt resources until deadlock no longer exists

Operating Systems

Selection Criteria Deadlocked Processes

Least amount of processor time consumed so far
Least number of lines of output produced so far
Most estimated time remaining

Least total resources allocated so far

Lowest priority

Operating Systems

Deadlock 19

Strengths and Weaknesses of the Strategies

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance

Approaches for Operating Systems [ISLOS0]

Deadlock 20

Approach

Resource Allocation Policy

Different Schemes

Major Advantages

Major Disadvantages

Prevention

Conservative; undercommits
resources

Requesting all resources
at once

+“Works well for processes that perform a
single burst of activity
+No preemption necessary

“Inefficient

+Delays process initiation

«Future resource requirements
must be known by processes

Preemption

+Convenient when applied to resources
whose state can be saved and restored
easily

“Preempts more often than
necessary

Resource ordering

+Feasible to enforce via compile-time
checks

“Needs no run-time computation since
problem is solved in system design

*Disallows incremental resource
requests

Avoidance

Midway between that of
detection and prevention

Manipulate to find at
least one safe path

«No preemption necessary

+Future resource requirements
must be known by 08

*Processes can be blocked for
long petiods

Detection

Very liberal; requested resources
are granted where possible

Invoke periodically to
test for deadlock

+Never delays process initiation
+Facilitates on-line handling

«Inherent preemption losses

Operating Systems

Dining Philosophers Problem Deadlock 21

Concerns:
- deadlock may occur

- starvation (indefinite
postponement) may occur

Operating Systems

Dining Philosophers Solution | Deadlock 22

int 1i;
semaphore fork([5] = {1};

int main() {
parbegin(phil (0), phil (1), phil(2), phil(3), phil(4));

void phil (int 1) {
while (true) {

think () ;
wait (fork[i]);: // wait ‘til get left fork
wait (fork[(i + 1) % 51); // wait ‘til get right fork
eat () ;
signal (fork[(i + 1) % 5]); // put right fork down
signal (fork[i]); // put left fork down

Assume:
- think () and eat () are guaranteed to return in finite, but not fixed, time

Operating Systems

Dining Philosophers Solution II Deadlock 23

int 1i;
semaphore fork([5] = {1};

semaphore room = 4;

void phil (int 1) {
while (true) {

think () ;
wait (room); // cap attendance at 4
wait (fork[i]); // wait ‘til get left fork
wait (fork[(i + 1) % 5]); // wait ‘til get right fork
eat () ;
signal (fork[(i + 1) % 5]); // put right fork down
signal (fork[i]); // put left fork down
signal (room); // raise cap when leaving

}

Really cheesy... essentially cheats by changing the fundamental problem... but it does
work.

Operating Systems

Dining Philosophers Solution IlI Deadlock 24
int i;
semaphore fork([5] = {1};

void phil (int 1) {
int J =1 % 2;
while (true) {

think () ;
wait (fork[i+3]); // go for preferred fork
wait (fork[(i+1-3) % 5]); // go for opposite fork
eat () ;
signal (fork[(i+1-3) % 5]); // put down opposite fork
signal (fork[i+]j]) // put down preferred fork
}
}
Basically:

- makes alternating philosophers left-handed
- no artificial limit on # of philosophers competing at once
- does it work?

Operating Systems

