
CS 3204 Operating Systems

©William D McQuain, January 2005 1

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

1Deadlock

Operating Systems

Deadlock
Permanent blocking of a set of processes that either compete for system resources or

communicate with each other

No efficient solution

Involve conflicting needs for resources by two or more processes

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

2Deadlock

Operating Systems

No Deadlock

CS 3204 Operating Systems

©William D McQuain, January 2005 2

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

3Deadlock

Operating Systems

Deadlock

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

4Deadlock

Operating Systems

Reusable Resources
Used by only one process at a time and not depleted by that use
Processes obtain resources that they later release for reuse by other processes
Processors, I/O channels, main and secondary memory, devices, and data structures such

as files, databases, and semaphores
Deadlock occurs if each process holds one resource and requests the other

CS 3204 Operating Systems

©William D McQuain, January 2005 3

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

5Deadlock

Operating Systems

Another Example of Deadlock
Space is available for allocation of 200KiB, and the following sequence of events occur

P1

. . .

. . .
Request 80 KiB;

Request 60 KiB;

P2

. . .

. . .
Request 70 KiB;

Request 80 KiB;

Deadlock occurs if both processes progress to their second request, assuming the
processes block until their requests can be granted.

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

6Deadlock

Operating Systems

Consumable Resources
Created (produced) and destroyed (consumed)
Interrupts, signals, messages, and information in I/O buffers
Deadlock may occur if a Receive message is blocking
May take a rare combination of events to cause deadlock

Deadlock occurs if receive is blocking:

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);

CS 3204 Operating Systems

©William D McQuain, January 2005 4

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

7Deadlock

Operating Systems

Resource Allocation Graphs
Directed graph that depicts a state of the system of resources and processes

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

8Deadlock

Operating Systems

Conditions for Deadlock
Mutual exclusion

Only one process may use a resource at a time
Hold-and-wait

A process may hold allocated resources while awaiting assignment of others
No preemption

No resource can be forcibly removed form a process holding it

Circular wait
A closed chain of processes exists, such that each process holds at least one resource

needed by the next process in the chain

CS 3204 Operating Systems

©William D McQuain, January 2005 5

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

9Deadlock

Operating Systems

RAG with Deadlock

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

10Deadlock

Operating Systems

Possibility of Deadlock
Mutual Exclusion

No preemption

Hold and wait

Circular wait

CS 3204 Operating Systems

©William D McQuain, January 2005 6

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

11Deadlock

Operating Systems

Deadlock Prevention

Mutual Exclusion
Must be supported by the operating system

Hold and Wait
Require a process request all of its required resources at one time?

No Preemption
Process must release resource and request again?
Operating system may preempt a process to require it releases its resources?

Circular Wait
Define a linear ordering of resource types?

Goal
Design the system so that deadlock is logically impossible

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

12Deadlock

Operating Systems

Deadlock Avoidance

A decision is made dynamically whether the current resource allocation request will, if
granted, potentially lead to a deadlock

Requires knowledge of future process request

Do not start a process if its demands
might lead to deadlock

Do not grant an incremental resource
request to a process if this
allocation might lead to deadlock

Goal
Deny requests that might lead to the occurrence of deadlock

CS 3204 Operating Systems

©William D McQuain, January 2005 7

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

13Deadlock

Operating Systems

Resource Allocation Denial
Referred to as Dijkstra’s Banker’s Algorithm
State of the system is the current allocation of resources to process
Safe state is where there is at least one sequence that does not result in deadlock
Unsafe state is a state that is not safe

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

14Deadlock

Operating Systems

Determination of a Safe State
Initial state:

P2 runs to completion:

CS 3204 Operating Systems

©William D McQuain, January 2005 8

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

15Deadlock

Operating Systems

Determination of a Safe State
P1 runs to completion:

P3 runs to completion:

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

16Deadlock

Operating Systems

Determination of an Unsafe State

CS 3204 Operating Systems

©William D McQuain, January 2005 9

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

17Deadlock

Operating Systems

Deadlock Avoidance
Maximum resource requirement must be stated in advance
Processes under consideration must be independent; no synchronization requirements
There must be a fixed number of resources to allocate
No process may exit while holding resources

1

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

18Deadlock

Operating Systems

Strategies once Deadlock Detected
Abort all deadlocked processes

Back up each deadlocked process to some previously defined checkpoint, and restart all
process
Original deadlock may occur

Successively abort deadlocked processes until deadlock no longer exists

Successively preempt resources until deadlock no longer exists

CS 3204 Operating Systems

©William D McQuain, January 2005 10

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

19Deadlock

Operating Systems

Selection Criteria Deadlocked Processes
Least amount of processor time consumed so far
Least number of lines of output produced so far
Most estimated time remaining
Least total resources allocated so far
Lowest priority

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

20Deadlock

Operating Systems

Strengths and Weaknesses of the Strategies

CS 3204 Operating Systems

©William D McQuain, January 2005 11

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

21Deadlock

Operating Systems

Dining Philosophers Problem
Concerns:

- deadlock may occur
- starvation (indefinite

postponement) may occur

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

22Deadlock

Operating Systems

Dining Philosophers Solution I

int main() {
parbegin(phil(0), phil(1), phil(2), phil(3), phil(4));

}

int i;
semaphore fork[5] = {1};

void phil(int i) {
while (true) {

think();
wait(fork[i]); // wait ‘til get left fork

wait(fork[(i + 1) % 5]); // wait ‘til get right fork
eat();

signal(fork[(i + 1) % 5]); // put right fork down
signal(fork[i]); // put left fork down

}
}

Assume:
- think() and eat() are guaranteed to return in finite, but not fixed, time

CS 3204 Operating Systems

©William D McQuain, January 2005 12

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

23Deadlock

Operating Systems

Dining Philosophers Solution II
int i;
semaphore fork[5] = {1};
semaphore room = 4;

void phil(int i) {
while (true) {

think();
wait(room); // cap attendance at 4

wait(fork[i]); // wait ‘til get left fork
wait(fork[(i + 1) % 5]); // wait ‘til get right fork

eat();
signal(fork[(i + 1) % 5]); // put right fork down

signal(fork[i]); // put left fork down
signal(room); // raise cap when leaving

}
}

Really cheesy… essentially cheats by changing the fundamental problem… but it does
work.

Computer Science Dept Va Tech November 2005 ©2005 McQuain WD

24Deadlock

Operating Systems

Dining Philosophers Solution III
int i;
semaphore fork[5] = {1};
void phil(int i) {

int j = i % 2;
while (true) {

think();
wait(fork[i+j]); // go for preferred fork

wait(fork[(i+1-j) % 5]); // go for opposite fork
eat();

signal(fork[(i+1-j) % 5]); // put down opposite fork
signal(fork[i+j]); // put down preferred fork

}
}

Basically:
- makes alternating philosophers left-handed
- no artificial limit on # of philosophers competing at once
- does it work?

