
CS 3204 Capra section, Project 3 Fall 2005

Inside the Cookie Factory � Deadlock Prevention
In this project, you will develop another simulation that uses pthreads. The main focus of this project is to
design a solution that will avoid deadlock.

Cookies to Code Simulation
This simulation returns to the cookie-making elves, but this time simulates the assembly of a particular type
of cookie that has as ingredients a fudge coating, a wafer, and filling. Three cookie-assembling elves stand
at three stations (one elf per station) that have infinite amounts of the three ingredients: fudge, wafers, and
filling. The stations are arranged in a circle, with a table in the middle as shown below.

Table

Fudge station Filling station

Wafer station

In addition, there is one helper elf that repeatedly gets two random but different ingredients from the
stations and puts them on the table. The helper elf then waits until a cookie has been successfully
assembled by one of the cookie-assembling elves. When a cookie-assembling elf finishes a cookie, it rings
a bell to notify the helper elf. Upon hearing the signal bell, the helper elf stops waiting, increments a
counter of the number of cookies made, and then starts over, getting two new random ingredients and
putting them on the table.

The cookie-assembling elves wait at their stations until the two other ingredients they do not have a supply
of are on the table. If a cookie-assembling elf obtains the two other ingredients needed, then the elf will
assemble a cookie. For example, if the helper elf places fudge and filling on the table, then the elf at the
wafer station can assemble a cookie. Similarly, if the helper elf places a wafer and fudge on the table, then
the elf at the filling station can assemble a cookie. After assembling a cookie, the cookie-assembling elf
will ring the bell to signal the helper elf.

Your implementation must meet all the specifications outlined in this document, including:

! The helper elf must be implemented as shown on the next page. You may need to add
additional threads, mutexes, and shared variables to implement this project, but the helper
elf CANNOT make use of them.

! Each elf must be implemented as a separate thread using the pthread library as installed on
the CSLab Linux machines running Fedora Core 4 in McBryde 124. This means you will
have at least four threads: one for each of the cookie-assembling elves and one for the
helper elf.

! Deadlock must be avoided.
! Once two ingredients are placed on the table, one of the cookie-assembling elves should

(eventually) make a cookie. In other words, there should not be starvation. Because the
helper elf always randomly chooses two different ingredients, each time the helper places
two ingredients on the table, there will be a combination of ingredients on the table that are
needed by one of the cookie-assembling elves to make a cookie.

! The simulation should continue until a pre-specified number of cookies have been made.
! Your solution can only use mutexes and shared variables for synchronization. Specifically,

you may not use counting semaphores or condition variables. The only pthread functions
you can use in this project are:
 pthread_create() pthread_exit()
 pthread_mutex_init() pthread_mutex_lock()
 pthread_mutex_unlock()

10/22/2005 6:05 PM page 1

CS 3204 Capra section, Project 3 Fall 2005

The main challenge in this project is to create a solution that avoids deadlock.

The helper elf must be implemented as indicated by the pseudocode elf_helper shown below. Note that
there are 6 mutexes used: m_bell to represent the signal bell, m_fudge, m_wafer, and m_filling to
signal when the helper elf places the corresponding ingredient on the table, m_sim_done to signal to the
parent thread when the simulation is done (i.e. max_cookies have been assembled), and m_helper_stop
is used so that the helper will block (i.e. stop putting ingredients on the table) while the parent thread prints
the summary and exits. You may need to add additional threads, mutexes, and/or shared variables to
implement this project, but the helper elf cannot make use of them.

 elf_helper

 srand(seed);

while (1)
{
 m_bell.lock()
 increment num_cookies
 print num_cookies message
 if (num_cookies == max_cookies) {
 m_sim_done.unlock() /* signal that the sim is done */
 m_helper_stop.lock() /* stop helper processing */
 }

/* pick first random ingredient */
random_ingredient1 = select_random_ingredient(NULL);

 /* pick second random ingredient different from the first */
random_ingredient2 = select_random_ingredient(random_ingredient1);

 /* signal that the ingredients are available */
switch (random_ingredient1)

 case fudge:
 m_fudge.unlock(); print fudge; break;
 case wafer:
 m_wafer.unlock(); print wafer; break;
 case filling:
 m_filling.unlock(); print filling; break;
 switch (random_ingredient2)
 case fudge:
 m_fudge.unlock(); print fudge; break;
 case wafer:
 m_wafer.unlock(); print wafer; break;
 case filling:
 m_filling.unlock(); print filling; break;

 }

Suppose the cookie-assembling elves were implemented to run the code shown below in infinite loops:

 elf_fudge elf_wafer elf_filling
 m_wafer.lock() m_filling.lock() m_fudge.lock()
 m_filling.lock() m_fudge.lock() m_wafer.lock()
 make_cookie() make_cookie() make_cookie()
 m_bell.unlock() m_bell.unlock() m_bell.unlock()

The implementation of the cookie-assembling elves shown above has a number of potential paths that will
result in deadlock. For example, suppose that the helper elf places fudge and a wafer on the table. If the elf
at the filling station takes the fudge and the elf at the fudge station takes the wafer, then deadlock will
occur. The problem is that each cookie-assembling elf is trying to obtain two resources in order to
assemble a cookie. Your implementation must avoid deadlock.

10/22/2005 6:05 PM page 2

CS 3204 Capra section, Project 3 Fall 2005

Output and Example
Two command-line arguments will be passed to the simulation: the number of cookies to make in this
simulation run, and a seed value for the random number generator.

The first command-line argument should be the number of cookies to make in this simulation run. When
that many cookies have been made, then the simulation should stop, print a summary indicating the total
number of cookies made and how many cookies were assembled by each elf, and then exit.

The second command-line argument should be a seed value for the random number generator. You should
use the srand() and rand() functions in the C standard library <stdlib.h>. The second command-line
argument should be passed into srand() to seed the random number generator.

Your output should be similar to the output shown below:

Starting a simulation to make 5 cookies.

elf_helper: cookies made so far = 0
 putting fudge
 putting filling
elf_wafer:
 made a cookie

elf_helper: cookies made so far = 1
 putting fudge
 putting filling
elf_wafer:
 made a cookie

elf_helper: cookies made so far = 2
 putting wafer
 putting fudge
elf_filling:
 made a cookie

elf_helper: cookies made so far = 3
 putting wafer
 putting filling
elf_fudge:
 made a cookie

elf_helper: cookies made so far = 4
 putting filling
 putting wafer
elf_fudge:
 made a cookie

elf_helper: cookies made so far = 5

Summary
 total cookies made = 5
 cookies by elf_fudge = 2
 cookies by elf_wafer = 2
 cookies by elf_filling = 1

Exiting simulation.

Documentation
In addition to writing good in-line documentation in your code, you must also include a file named
�readme� that contains a brief description of the way you implemented the simulation, how you protected
resources, and how you insured there would not be deadlock or starvation.

10/22/2005 6:05 PM page 3

CS 3204 Capra section, Project 3 Fall 2005

Design and implementation requirements
There are some explicit requirements, in addition to those on the Programming Style page of the course
website:

• Your simulation must be implemented in ISO-compliant C/C++ code. You may make use of any
language-standard types and/or containers you find useful.

• You must decompose your implementation into separate source and header files, in some sensible
manner that reflects the logical purpose of the various components of your design.

• You must document your implementation according to the Programming Standards page on the
course website.

• You must properly allocate and de-allocate memory, as needed.

In general, you are expected to apply the design and implementation guidelines and skills covered in your
previous computer science courses. You may implement your solution in pure C, or in C++.

Evaluation
Remember that your implementation will be tested in the McBryde 124 lab environment (GCC/Linux). No
help will be given for any other development environments. It is your responsibility to make sure your
implementation works correctly in the lab.

Your implementation will be evaluated for documentation and design, as well as for correctness of results.
Note that the evaluation of your project may depend substantially on the quality of your code and
documentation.

Your simulation should be named cookieassembly and should accept two command-line arguments: the
number of rounds to execute, and a seed for srand(). For example:

 bash> cookieassembly 25 1234

should cause your simulation to run for 25 rounds with a random number seed of 1234.

What to turn in and how
This assignment will be collected on the Curator system. The testing will be done under the McBryde 124
lab environment. You may write your code in either C or C++ for this project.

Submit a single gzip�d tar file containing the C/C++ source and header files, the readme files, and the test
case files for your implementation to the Curator system. Submit nothing else. Be sure that your header
files only contain include directives for Standard C/C++ and UNIX header files; any other include
directives will probably cause compilation errors. It must be possible to unpack the file you submit using
the following command:

tar –zxf <name of your file>

The unpacked files will then be compiled, typically using the following command syntax:

[g++ | gcc] –o <name we give the executable> [*.cpp | *.c] -lpthread

The appropriate link for submitting to the Curator system will be posted on the course web site. You will
be allowed to submit your project up to three times before the due date in order to fix errors you discover
before your project is tested. Your latest submission will be the one that is tested.

Pledge
Your program submission must be pledged to conform to the Honor Code requirements for this course.
Specifically, you must include the pledge statement provided on the course web site in one of your
submitted files.

10/22/2005 6:05 PM page 4

	Inside the Cookie Factory – Deadlock Prevention
	Cookies to Code Simulation
	Output and Example
	Documentation
	Design and implementation requirements
	Evaluation
	What to turn in and how
	Pledge

