
CS 3204 Capra section, Project 2 REVISED SPECIFICATION Fall 2005

Cookies to Code � A simulation with pthreads

In this project, you will develop a simulation that uses pthreads. The simulation is a variation on the
producer-consumer problem.

Cookies to Code Simulation
This simulation will involve two sets of beings: elves � known for their great cookie making abilities, and
cs3204 students � known for their great code writing abilities. In this simulation, elves produce cookies
that cs3204 student consume in order to produce lines of code. The code that the students produce is part
of an open source project to create a new operating system and all the students contribute lines of code to
the same codebase. As you might expect, there are some constraints on how the elves can produce cookies
and how the cs3204 students can produce code.

Elves harvest grain using tractors, bake cookies using ovens, and deliver cookies using trucks. Students eat
cookies to gain �cookie energy� and use cookie energy to write lines of code using computers.

Actions
Elves can do the following actions:

Harvest
An elf can harvest grain in the fields. Every time an elf harvests, 1 unit of grain is produced and added
to the elves� grain supply. The fields are magic fields that can supply an infinite amount of grain.
However, the elves only have NUM_TRACTORS tractors, so only NUM_TRACTORS elves can be
harvesting at the same time.

Bake
An elf can bake cookies in an oven. Every time an elf bakes, 1 unit of grain is used from the elves�
gain supply and 1 unit of cookies are produced and added to the elves� cookie supply. The elves have
NUM_OVENS ovens, so only NUM_OVENS elves can be baking at the same time.

Deliver
An elf can deliver cookies to the cs3204 students. Every time an elf delivers, 1 unit of cookies are
transferred from the elves� cookie supply to the cookie supply for all the students in McBryde Hall.
The elves only have NUM_TRUCKS trucks, so only NUM_TRUCKS elves can be making deliveries
at the same time.

Sleep
An elf can sleep for 1 second of actual wall clock time (i.e. sleep(1);).

If an elf is trying to do an action, but cannot get the resources needed, it will block (not busy-wait) until the
resources are available.

Students can do the following actions:

Code
A student can write lines of code. Every time a student codes, 50 lines of code are added to the
students� combined codebase and 1 unit of cookie energy is subtracted from the student who was
coding. A student cannot start coding if they have less than 1 unit of cookie energy. The students only
have NUM_COMPUTERS computers, so only NUM_COMPUTERS students can be writing code at
the same time. If a student has zero cookie energy, they cannot code � they will skip coding and go to
the next activity on their list.

Eat
A student can eat cookies. Every time a student eats, 1 unit of cookies is consumed from the cookie
supply for all the students and is converted into 1 unit of cookie energy for that student. A student can

10/9/2005 6:13 PM page 1

CS 3204 Capra section, Project 2 REVISED SPECIFICATION Fall 2005

only store up to 9 units of cookie energy � after that they are full and will not eat any more cookies
until they are below 9 units of cookie energy (in other words, if a student tries to eat when they have 9
units of cookie energy, they will skip eating and go on to the next activity on their list).

Sleep
A student can sleep for 1 second of actual wall clock time (i.e. sleep(1);).

Except as noted in the descriptions of code and eat, if a student is trying to do an action, but cannot get
the resources needed, it will block (not busy-wait) until the resources are available.

How to implement the simulation
You must implement a simulation of the processes described above using the pthreads library. The
simulation should be named cookies2code and should read a configuration file with the following
information in the format shown:

 NUM_ELVES = [0-9]
 NUM_STUDENTS = [0-9]
 NUM_TRACTORS = [0-9]
 NUM_OVENS = [0-9]
 NUM_TRUCKS = [0-9]
 NUM_COMPUTERS = [0-9]
 START_ELVES_GRAIN = [0-99]
 START_ELVES_COOKIES = [0-99]
 START_STUDENTS_COOKIES = [0-99]
 ELF_0 = <elf_command_filename0>
 ELF_1 = <elf_command_filename1>
 ...
 STUDENT_0 = <student_command_filename0>
 STUDENT_1 = <student_command_filename1>
 ...

The configuration file specifies a number of elves (NUM_ELVES) and a number of students
(NUM_STUDENTS) for the simulation run. It specifies the number of tractors (NUM_TRACTORS),
ovens (NUM_OVENS), trucks (NUM_TRUCKS) and computers (NUM_COMPUTERS), and also
specifies the starting values for the number of units of grain in the elves� supply
(START_ELVES_GRAIN), the number of cookies in the elves� supply (START_ELVES_COOKIES), and
the number of cookies in the student�s supply (START_STUDENTS_COOKIES). All students start each
simulation with a cookie energy level of zero. The configuration file also specifies a file of commands for
each elf and each student to follow in the simulation.

Each <elf_command_filenameN> should be a text file that consists of actions for an elf to perform. For
example:

 sleep
 bake
 harvest
 bake
 deliver

Each <student_command_filenameN> should be a text file that consists of actions for a student to perform,
each followed by a length of time to perform that action. For example:

 sleep
 eat
 code

10/9/2005 6:13 PM page 2

CS 3204 Capra section, Project 2 REVISED SPECIFICATION Fall 2005

 code
 eat

Your program should create a separate thread for each elf and for each student. The thread for each elf and
each student should read commands from the <command_filename> given in the configuration file and
perform them in the sequence they are listed in the command file.

Your program should implement separate functions called harvest(), bake(), deliver(), eat(),
and code() that take appropriate arguments and modify appropriate data structures. Each elf and student
should be identified by a single digit identifier [0-9]. You may find it useful to pass this identifier into the
harvest(), bake(), deliver(), eat(), and code() functions.

You will need to decide how to implement the simulation so that it keeps track of the elves� grain supply,
the elves� cookie supply, the students� cookie supply, the students� codebase, and the individual students�
cookie energy. There are several methods you could use to keep track of these simulation values and to
insure they are maintained properly. Whatever method you choose, you should be sure that variable
changes are properly protected and that deadlock and starvation cannot occur. Note that it is possible to
give sequences of actions that will lead to elves and students being blocked � this is okay. Preventing
deadlock and starvation in your simulation does not mean that there will always be enough harvested grain
for baking and cookies for eating.

You must implement your simulation using the pthread library as installed on the cslab computers in
McBryde 124. From the pthread library, you should only use the following functions in the code you write:

 pthread_create()
 pthread_exit()
 pthread_mutex_init()
 pthread_mutex_lock()
 pthread_mutex_unlock()

Not all pthread libraries include built-in support for semaphores. However, there is a library of semaphore
code for pthreads as part of the document, �Getting Started With POSIX Threads�, by Tom Wagner and
Don Towsley, Department of Computer Science, University of Massachusetts at Amherst, July 19, 1995.
This document is available on the web. You must use the semaphore library provided in Appendix A of
this document to provide your semaphores. Be sure to include comments in your code with a citation about
the name, author, and where you obtained the semaphore library code. You may find it helpful to make a
small modification to the semaphore_init() routine in the library to allow a starting value to be
specified for the semaphore when it is initialized.

You will also need to implement two mechanisms in your parent process: 1) one that insures that your
parent process does not exit before the threads have completed their execution and 2) one that allows you to
terminate the parent process (which will in turn terminate all the threads) by typing �quit� at a prompt. The
reason for this is that your simulation may encounter a situation in which all the elves and/or students are
blocked and the user should be able to stop the simulation at any time after it starts.

Output and Example
Each elf and student thread should print output about its actions and the current status of the simulation.
Imagine a simulation with 2 elves and 1 student with commands as shown below:

Elf 1 commands: deliver
Elf 2 commands: harvest, bake
Student 1 commands: eat, code

Your output should look something like the output shown below.

10/9/2005 6:13 PM page 3

CS 3204 Capra section, Project 2 REVISED SPECIFICATION Fall 2005

Starting cookies2code simulation with:
 Elves = 2
 Students = 1
 Tractors = 2
 Ovens = 1
 Trucks = 1
Begin simulation
 Status: Grain = 0, Ecookies = 0, Scookies = 0, Scode = 0
 S1ce = 0
Elf 1 trying to deliver
Elf 2 trying to harvest
Student 1 trying to eat
Elf 2 got a tractor
Elf 2 finished harvesting
 Status: Grain = 1, Ecookies = 0, Scookies = 0, Scode = 0
 S1ce = 0
Elf 2 trying to bake
Elf 2 got an oven
Elf 2 finished baking
 Status: Grain = 0, Ecookies = 1, Scookies = 0, Scode = 0
 S1ce = 0
Elf 1 found enough cookies to deliver
Elf 1 finished delivering
 Status: Grain = 0, Ecookies = 0, Scookies = 1, Scode = 0
 S1ce = 0
Student 1 found enough cookies to eat
Student 1 finished eating
 Status: Grain = 0, Ecookies = 0, Scookies = 0, Scode = 0
 S1ce = 1
Student 1 trying to code
Student 1 found enough computers to code
Student 1 finished coding
 Status: Grain = 0, Ecookies = 0, Scookies = 0, Scode = 50
 S1ce = 0

You may modify the format of the output slightly, but make sure that your status messages indicate the
status of the variables at the time the action was finished, not at the time the message is printed. This
means that you may need to use temporary variables to store the simulation status in the protected sections
of code. Any time that an elf or student starts trying an action an informative message should be printed.
Any time that an elf or student finishes an action an informative message should be printed and the status of
the simulation should be printed.

It is okay to use the semaphore library function semaphore_value() to output the value of a
semaphore in the status messages if your implementation needs this. However, you should NOT use
semaphore_value() in any type of decision making in the code � doing so would violate a
fundamental principle of semaphore use.

Remember that things are happening �in parallel� � interpreting output from multiple threads can be
confusing and can take some getting used to.

Documentation
In addition to writing good in-line documentation in your code, you must also include a file named
�readme� that contains a brief description of the way you implemented the simulation, how you protected
resources, and how you insured there would not be deadlock or starvation.

10/9/2005 6:13 PM page 4

CS 3204 Capra section, Project 2 REVISED SPECIFICATION Fall 2005

Test Cases
You must include with your implementation at least 3 sets of test cases that you used to satisfy yourself that
your simulation works correctly. For each test case, you should include a configuration file and as many
elf and student command files as are needed. For each test case, you should also include a readme file
that explains the situations tested and why the output is correct. Name your test case files according to the
following examples: �tc1-config�, �tc1-elf1�, �tc1-elf2�, �tc1-student1�, �tc2-config�, etc.

Design and implementation requirements
There are some explicit requirements, in addition to those on the Programming Style page of the course
website:

• Your simulation must be implemented in ISO-compliant C/C++ code. You may make use of any
language-standard types and/or containers you find useful.

• You must decompose your implementation into separate source and header files, in some sensible

manner that reflects the logical purpose of the various components of your design.

• You must document your implementation according to the Programming Standards page on the
course website.

• You must properly allocate and de-allocate memory, as needed.

In general, you are expected to apply the design and implementation guidelines and skills covered in your
previous computer science courses. You may implement your solution in pure C, or in C++.

Resources
You must use the library of semaphore code for pthreads in Appendix A of the document, �Getting Started
With POSIX Threads�, by Tom Wagner and Don Towsley, Department of Computer Science, University of
Massachusetts at Amherst, July 19, 1995. This document is available on the web at:

http://dis.cs.umass.edu/~wagner/threads_html/tutorial.html

Note that to get the code in Appendix A to work with the LinuxThreads version of pthreads installed on the
cslab machines, you will need to add the following #define statements:

 #define pthread_attr_default NULL
 #define pthread_mutexattr_default NULL
 #define pthread_condattr_default NULL

There is a nice book available on-line that describes semaphores and techniques for using them. It is called
�The Little Book of Semaphores� by Allen B. Downey. You may find this book helpful in understanding
and using semaphores. It is available as a PDF file for free at the web site:

 http://greenteapress.com/semaphores/

Evaluation
Remember that your implement will be tested in the McBryde 124 lab environment (GCC/Linux). No help
will be given for any other development environments. It is your responsibility to make sure your
implementation works correctly in the lab.

10/9/2005 6:13 PM page 5

CS 3204 Capra section, Project 2 REVISED SPECIFICATION Fall 2005

Your implementation will be evaluated for documentation and design, as well as for correctness of results.
Note that the evaluation of your project may depend substantially on the quality of your code and
documentation.

Your simulation should accept one argument, a configuration file:

 bash> cookies2code <configuration-file>

We will run your simulation using a variety of configuration files to test its performance.

What to turn in and how
This assignment will be collected on the Curator system. The testing will be done under the McBryde 124
lab environment.

You may write your code in either C or C++ for this project.

Submit a single gzip�d tar file containing the C/C++ source and header files, the readme files, and the test
case files for your implementation to the Curator system. Submit nothing else. Be sure that your header
files only contain include directives for Standard C/C++ and UNIX header files; any other include
directives will probably cause compilation errors. It must be possible to unpack the file you submit using
the following command:

tar –zxf <name of your file>

The unpacked files will then be compiled, typically using the following command syntax:

[g++ | gcc] –o <name we give the executable> [*.cpp | *.c] -lpthread

The appropriate link for submitting to the Curator system will be posted on the course web site. You will
be allowed to submit your project up to three times before the due date in order to fix errors you discover
before your project is tested. Your latest submission will be the one that is tested.

Pledge
Your program submission must be pledged to conform to the Honor Code requirements for this course.
Specifically, you must include the pledge statement provided on the course web site in one of your
submitted files.

10/9/2005 6:13 PM page 6

	Cookies to Code – A simulation with pthreads
	Cookies to Code Simulation
	Actions
	Harvest
	Bake
	Deliver
	Sleep
	Code
	Eat
	Sleep
	How to implement the simulation
	Output and Example
	Documentation
	Test Cases
	Design and implementation requirements
	Resources
	Evaluation
	What to turn in and how
	Pledge

