
Chapter 8

Paging and Virtual Memory
Systems

CS3204 - Arthur

Paging & Virtual Memory

� Virtual Memory - giving the illusion of more physical memory
than there really is (via demand paging)

� Pure Paging - The total program is kept in memory as sets of
(non-contiguous) pages

� No illusion of virtual memory

� Demand Paging - A program’s “working set” is kept in
memory, reference outside WS causes corresponding code to
be retrieved from disk (“page fault”)

� Provides the illusion of virtual memory

CS3204 - Arthur

Paging Systems
� Processes (programs) are

divided into fixed size pieces
called Pages

� Main memory is divided into
fixed size partitions called
Blocks (Page Frames)

� Pure Paging - entire program is
kept in memory during
execution, but pages are not
kept in contiguous blocks

� Demand paging - only parts of
program kept in memory during
execution, pages are not kept in
contiguous blocks

CS3204 - Arthur

Virtual Versus Physical Addresses
� A virtual address is represented as <page, offset>

where the page is determined by dividing each process
into fixed size pages, the offset is a number in the
range 0 - (page_size-1) .

� Memory is divided into fixed size blocks (or page
frames) and accommodates a process’ pages. The
physical address (PA) then is

(block_number * page_size + offset).

� In pure paging systems the entire VA space of a
process must reside in physical memory during
execution, but pages are not kept in contiguous blocks.

CS3204 - Arthur

Pure Paging Virtual Addresses…

� VA is determined from the compiled address

� VA has two components:

page number address in page

(or offset or displacement)

CS3204 - Arthur

Virtual Address to
Physical Address Mapping

Program divided into
Pages of size “p”

VA to PA
mapping

:
:

Page Frame 0

Page Frame 1

Page Frame 2

Page Frame 3

Page Frame 4

0 - p-1

p - 2p-1

2p - 3p-1

3p - 4p-1

4p - 5p-1

Real storage
divided

into page
frames of size

“p”

Page 3

Page 5

Page 4

Page 2

Page 1

Page 0

CS3204 - Arthur

Key Idea in Paging Systems

CPU

Compiled
Address PA

Address
Translator:

Determines VA
Maps VA to PA

(Hardware + OS)

Memory

Assume 256 bytes per page:

page number offset

8 bits

VA:

CS3204 - Arthur

Key Idea in Paging Systems…

4 000

3 253

3 254

3 255

A[0]

A[1]

A[2]

A[3]

Page Frame

3 7

4 5

Page Map
Table:

A[3]….

…A[0..2]

5
6
7

VA space:

PA space:

Page Offset

Frame

3 253

3 253

VA:
PA:

CS3204 - Arthur

Addressing Scheme

+

Base addr of PMT
Page

Number Displacement

p

PMTa

d

Physical Address
PA = (b * page size) + d

a

b

p

+

Virtual Address
v = (p , d)

b * page_size

CS3204 - Arthur

Paging Mapping Example

Job 1

Job 2

Job 3

PMT's

0

1

2

3

4

5

6

OS

J1 P2

J2 P0

J1 P0

J3 P0

J1 P1

J2 P1

MBT

0

1

2

3

5

1

0

0

2

2

6

4

1

1

Page Block

8

7

7 J3 P2

8 J3 P1

PMTAR

PMT addr of
current Job

CS3204 - Arthur

Page Management

Page Map Table (PMT):

Contains VA page to PA block mapping

1 PMT / job

1 Entry / page

Page Block

0 7

1 2

2 13

CS3204 - Arthur

Page Management

Points to PMT for currently executing job

1 PMTAR / System

Length of program in Base address of

pages (# PMT entries) current PMT

Page Map Table Address Register (PMTAR):

CS3204 - Arthur

Page Management …

Maps each block of main memory either
to a process id and page number or to
"free"

Memory Block Table (MBT)

1 MBT / System

1 Entry / Block

CS3204 - Arthur

Page Management …

Process (Job) Control Block (PCB)

Contains information about all jobs in the system

Stores: Job Size

Location of PMT

1 PCB / system

1 entry / job

CS3204 - Arthur

Page Addressing - Let’s get REAL

3 4388

PMTAR

4380

4384

4388

4392

4396

4400

25

10

6

16

63

45

Main Memory

PMT

block #s

VA = < page, offset >

PA = block size * block + offset

Assume:

1 word PMT entries;

byte addressable MM

Example:

page & block size = 4 K bytes

VA = < 1, 1234 >

PA = 4096 * 16 + 1234

CS3204 - Arthur

Determining Virtual Address <Page , Offset>
from the Compiled Address
Compiled Address (relative to 0) : 18087

Page size: 2K (2048 bytes)
Memory is byte addressable

Virtual Address:
Page = Div (Compiled Address, Page Size)
Offset = MOD (Compiled Address, Page Size)

<8 , 1703>

CS3204 - Arthur

Review Questions

Assume:

2 bytes PMT entries; byte addressable MM

page & block size = 4 K bytes

1) What is the maximum size for any program?

2) What VA corresponds to compiled address 220945?

2) What is the MBT length if MM size is 80M?

(Assume MBT entries are 2 bytes long.)

3) What is the PMT length if compiled size = 300K?

CS3204 - Arthur

Allocating Pages
procedure allocation (int Size) {

NPpgm := ceiling(Size / P);

NPmt := ceiling((NPPgm * WS) / P);

NPTot := NPPgm + NPPmt;

If (NPTot > MaxBlocks)

Then ERROR

Else If (NPTot blocks are not free in MBT)

Then Add job to HOLDQ;

Else {

Allocate pages to blocks;

Update MBT, PCB;

Create, initialize PMT;

}

}

WS

Word size in bytes

P

Page size in Bytes

Size

Size of program in bytes

NPPgm

Num of pages needed for pgm

NPmt

number of pages needed for PMT

(1 word / entry)

NPTot

Total number of pages needed

MaxBlocks

main memory size, in blocks

CS3204 - Arthur

Quiz 8

� Consider the following:
� PMTAR:
� Memory contents as indicated

on right
� Page size of 4096 bytes

� What is the value of second
entry in the PMT?

� Given a physical address: 10000
� What is the virtual address?
� What is the compiled address in the executable?

2095

2213

14212

3211

9210

7209

17208

4207

1206

8205

5204

ValueLocation

CS3204 - Arthur

Sharing Pages of Reentrant Code
or Data Between Processes

CS3204 - Arthur

Pros/Cons of Paging

☺ Advantages:

� Efficient memory usage

� Simple partition management due to discontiguous
loading and fixed partition size

� No compaction necessary

� Easy to share pages

CS3204 - Arthur

Pros/Cons of Paging…

/ Disadvantages:

� Job Size <= Memory Size

� Internal fragmentation (half the page size on the average)

� Need special hardware for address translation

� Some main memory space used for PMT's

� Address translation lengthens memory cycle times

CS3204 - Arthur

Demand Paging

Jobs are paged, but not all pages have to be in memory at the
same time

VIRTUAL MEMORY
� The operating system creates the illusion of more

memory

� Job size can exceed main memory size

� Pages are only brought in when referenced (on demand)

� Often page 0 is loaded initially when a job is scheduled

CS3204 - Arthur

Demand Paging Motivation

0

1

2

3

5

1

0

0

2

2

6

4

Job 1

Job 2

Job 3

PMT's

0
1

2
3

4

5
6

OS
J1 P2
J2 P0

J1 P0

J3 P0

J1 P1

J2 P1

MBT

1. What happens if job 3 references page 1?

2. What does the CPU do while J3P1 is being read?

1

1

Page Block

CS3204 - Arthur

Terminology

Page fault:

Interrupt that arises upon a reference to a page that is not in
main memory.

Page swapping :

Replacement of one page in memory by another page in
response to a page fault.

CS3204 - Arthur

When a Page Fault Occurs

� Select a page to be removed
� Copy it to disk if it has been changed **
� Update old page’s PMT **
� Copy new page to main memory
� Update new page’s PMT
� Update MBT **

Thrashing occurs when a job continuously references
pages which are not in main memory

CS3204 - Arthur

Demand Page Management

Page Map Table (PMT)
Maps page to blocks
Status: Pointer to

Main Memory Block
Indicator

Main/Secondary Memory

Memory Block Table (MBT)
Maps block to page
Contains: Job/Page Number

Reference bit
Change bit

File Map Table (FMT)
Maps a job’s pages to
secondary memory

PMT for the Disk

1 FMT / job

1 entry / page

CS3204 - Arthur

Demand Paging Schematic

PMTAR
3

PMT
M
M

S

OS
0

1

2

3

4

5

6

7

Main Memory

0

1

2

3

4

5

6

7

MBT

0
1
2

J1 P1

J1 P2

R C

FMT

0
1
2

DISK

CS3204 - Arthur

Demand Paging Data Structures

0
1

2
3

4

5
6

OS
J1 P2
J2 P0

J1 P0

J3 P0

J1 P1

J2 P1

MBT

1. What happens if job 3 references page 1?

Referenced
Changed

PMT

0

1

2

3
5
1

0

0

2

2

6

4

Job 1

Job 2

Job 3

1

1

Page Block In_Mem Disk

Dsk AddrYes
Dsk Addr

Dsk Addr

Dsk Addr

Dsk Addr

Dsk Addr
Dsk Addr
Dsk Addr

Yes

Yes

Yes

Yes

Yes

No
No

FMT

5

2

4

3

8
6

1

1

0

0

0

0

CS3204 - Arthur

Summary of Data Structures
1) Page Map Table (PMT): Maps page to block

Fields: - page number (which page in memory)

- In_Memory <--- New!

2) Memory Block Table (MBT): Maps block to either process id
and page number or to "free"

Fields: <--- New!

- Reference Count

- Change Bit

3) File Map Table (FMT): Maps a job's pages to secondary
memory (like a PMT for the disk) <--- New!

1 FMT / job, 1 entry / page

CS3204 - Arthur

Page Replacement

Local versus Global Page Replacement

Local Requires that each process remove a page from its own
set of allocated blocks

Global A replacement page may be selected from the set of all
blocks

Now we consider the decision of selecting which page to replace
upon a page fault.

CS3204 - Arthur

A Program’s Execution Profile

Question:

Does a program
need all its pages
in main memory
at all times?

CS3204 - Arthur

The Principle of Locality
At any time, the locality of a process is the set of pages that are

actively being used together

Spatial There is a high probability that once a location is
referenced, the one after it will be accessed in the
near future

Sequential code, Array processing, Code within a loop

Temporal A referenced location is likely to be accessed again
in the near future

Loop indices, Single data elements

CS3204 - Arthur

More on Locality

Does a recursive function display spatial
or temporal locality?

Does a linked list help or hurt
locality?

CS3204 - Arthur

Working Set Theory (Formalizes "Locality")

� A process’ working set is the number of pages currently
being referenced during (t , t+Δ) for some small Δ.

� The working set size is an estimate of degree of locality

� A job should not be scheduled unless there is room for its
entire working set

� Why?

CS3204 - Arthur

Idea Behind Working Set

CS3204 - Arthur

Motivation : Page Replacement Algorithms

Which page replacement rule
should we use to give the
minimum page fault rate?

Page fault rate = # faults / #refs

CS3204 - Arthur

Page Replacement Algorithm:
Optimal Replacement

� Replace the page which will not be used for the longest period of
time

� Lowest page fault rate of all algorithms

� Requires knowledge of the future

Example:

MM has 3 blocks containing 3,5,2.

Current and future refs:

4, 3, 3, 4, 2, 3, 4, 5, 1, 3, 4

fault OPT replaces 5

CS3204 - Arthur

Optimal Replacement Algorithm

Page Trace:

0

1

2

0 321 0 041 1 432

Block
Number

Page Faults =

Page Fault Rate =

CS3204 - Arthur

Replacement Algorithm: FIFO
� Replace the "oldest" page

� A frequently used page may be swapped out

Belady's Anomaly:

For some page replacement algorithms, the
page fault rate may increase as the number of
blocks increase

CS3204 - Arthur

FIFO Page Replacement
Page Trace:

0

1

2

0 321 0 041 1 432

Block
Number

0

1

2

3

Page Trace:

Block
Number

Page Faults =

Page Faults =

0 321 0 041 1 432

CS3204 - Arthur

Quiz 9

� What is the difference between a page
and a page frame?

� What is the difference between internal
and external fragmentation?

CS3204 - Arthur

Replacement Algorithms:
Least Recently Used (LRU)

� Uses the recent past as an approximation of
the near future

� Stack algorithm

�Does NOT suffer from Belady's Anomaly

� Hardware / Overhead intensive

CS3204 - Arthur

Least Recently Used (LRU)
Page Trace:

0

1

2

0 321 0 041 1 432

Block
Number

0

1

2

3

Page Trace:

Block
Number

Page Faults =

Page Faults =

0 321 0 041 1 432

CS3204 - Arthur

Replacement Algorithms:
LRU Approximation

� Uses reference bits in the MBT and a static reference pointer
(RP)

� The reference pointer is not reinitialized between calls to LRU
Approximation

� Set referenced bit to 1 when loading a page

� Set referenced bit to 1 on a R/W

� Set referenced bit to 0 if currently a 1 and scanning for a
replacement page

� Replace page with reference bit = 0

CS3204 - Arthur

LRU Approximation Algorithm…

begin

RP := (RP + 1) mod MBTSize;

While (MBT[RP].Referenced = 1 Do

Begin

MBT[RP].Referenced := 0

RP := (RP + 1) mod MBTSize;

End

return(RP);

Note: referenced bit is set to 1 when a page is
(a) referenced, and
(b) when first loaded into memory

RP always points to last page replaced

Initially: RP <- -1

CS3204 - Arthur

LRU Approximation

Page Trace:

0

1

2

0 321 0 041 1 432

Block
Number

Page Faults =

Page Fault Rate =

CS3204 - Arthur

Replacement Algorithms:
Least Frequently Used (LFU)

� Keep a reference count, select page with lowest
count

� Reference count is number of times a page has been
referenced over its current stay in memory, not
over the lifetime of the program

Page Trace:

0

1

2

0 321 0 041 1 432

Block
Number

Page Faults =

CS3204 - Arthur

Pros/cons of Demand Paging
☺ Advantages:

• Can run program larger than physical memory

• Allows higher multiprogramming level than pure paging

• Efficient memory usage

• No compaction is required

• Portions of process that are never called are never loaded

• Simple partition management due to discontinuous loading
and fixed partition size

• Easy to share pages

CS3204 - Arthur

Pros/cons of Demand Paging…

/ Disadvantages:

• Internal fragmentation

• Program turnaround time increases each
time a page is replaced, then reloaded

• Need special address translation hardware

