Memory Management

Chapter 7

Memory Management

 Subdividing memory to accommodate multiple

processes

» Memory needsto be allocated (and de-
allocated) to ensure a reasonable supply of
ready processes to consume available

processor time

Main
Memory

(O

CPU

Memory Management

Requirements

» Relocation

— Programmer does not know where the program
will be placed in memory when it is executed

— While the program is executing, it may be
swapped to disk and returned to main memory at a
different location (relocated)

— Memory references must be translated in the code
to actual physical memory address

Memory Management

Requirements

» Protection

— Processes should not be able to reference memory
locations in another process without permission
* Impossible to check absolute addresses at compile time
* Must be checked at run time

— Memory protection requirement must be satisfied
by the processor (hardware) rather than the
operating system (software)

» Operating system cannot anticipate all of the memory
references a program will make

Memory Management

Reguirements

» Sharing

— Allow several processes to access the same portion

of memory
* Better to alow each process access to the same copy of
the program rather than have their own separate copy

» Logical Organization

— Programs are written in modules

» Modules can be written and compiled independently

« Different degrees of protection given to modules (read-
only, execute-only)

* Share modules among processes

Memory Management Techniques

« Memory Management Techniques
determine:
—Where and how a process resides in memory
—How addressing is performed
* Binding:
identifiers --> compiled relative addresses

(relativeto 0)
--> physical addresses

Memory Management Techniques

1)
2)
3)
4)

Single Contiguous 5)
Overlays 6)
Fixed (Static) Partitions 7)
Relocation (Dynamic) 8)

Partitions

For each technique, observe:

= Algorithms

= Advantages/ Disadvantages
= Specia Requirements

Paging
Demand Paging
Segmented

Segmented / Demand
Paging

|. Single Contiguous

While (job is ready) Do

Then Begin

End

Else Error

If (JobSize <= MemorySize)

Allocate Memory
Load and Execute Job

Deallocate Memory

Single Contiguous...

© Advantages:

» Simplicity
» No specia hardware

® Disadvantages:

» CPU wasted
» Main memory not fully used

» Limited job size

I1. Overlays

= Programs can be sectioned into modules

= Not all modules need to be in main memory at the
sametime A

e e

C D

» Programmer specifies which modules can overlay
each other

 Linker inserts commands to invoke the loader when
the modules are referenced

» The "parent" must stay in memory
» Used in DOS as an alternative to Expanded Memory. "

[llustration of Overlays

Program Component: A B C

D E

Memory: 40K 30K 10K 10K 40K

Without

With
Overlays 0 Overlays
A 0
40 A
B 40
c 70 B e
D c|D 80
E
130
11
Overlays ...

© Advantages:

» Reduced memory requirements

® Disadvantages:

= Overlap map must be specified by programmer

= Programmer must know memory requirements

= Overlapped modules must be completely digoint

12

Fixed (Static) Partitioning with

Absolute Trandation

= Earliest attempt at multiprogramming

= Partition memory into fixed sized areas:

oM -
Partition #1

Partition #2

Partition #3

16M

6M
2M

8M

13

Fixed (Static) Partitioning with
Absolute Trandation ...

- Each partition can hold ONE process

» Code generated using an ABSOLUTE address
reflecting the starting address of the partitionin

which it is supposed to execute
(relativeto 0, 6M, or 8M in picture)

= Queue of processes waiting for each partition

14

Fixed (Static) Partitioning with
Absolute Translation

0
Operating
Job queue for partition 1 - system
These jobs may N
be run only in wee | Partition 1
partition 1. b
. Job queue for partition 2
These jobs may Y
be run only in cor - ke Partition 2
partition 2. &
Job queue for partition 3
These jobs may
| be run only in see - > LA
| partition 3. Partition 3
|
d

Fig. 7.6 Fixed partition multiprogramming with absolute translation and loading.

15

Fixed (Static) Partitioning with
Absolute Trandation...

Operating
system

Job queue for partition 1
No jobs
waiting
for partition 1

Partition 1
(empty)

Job queue for partition 2
No jobs
waiting
for partition 2

Partition 2
(empty)

Job queue for partition 3

Job | Job [Job | Job | Job Partition 3
FfE plc|B|A {in use)

d

Fig. 7.7 An extreme example of poor storage utilization in fixed partition multi-
programming with absolute translation and loading. Jobs waiting for partition 3
are small and could “fit” in the other partitions. But with absolute translation and
loading, these jobs may run only in partition 3. The other two partitions remain
empty.

Fixed Partitioning
« Main memory useisinefficient. Any program,

no matter how small, occupies an entire
partition. Thisis called internal fragmentation.

17

Fragmentation- Definitions

Fragmentation is asituation in which the free cells
IN main memory are not contiguous.

| nter nal fragmentation:

A situation in which free memory cells are within
the area allocated to a process

External fragmentation:

A situation in which free memory cellsarenot in
the area allocated to any process

18

Fixed Partition Fragmentation

7771 =INUSE
Partition [| =FREE Job Size
20K 20K
35K
25K 10K 10K
30K 77 30K

External fragmentation: 35K partition

Internal fragmentation: 25-10 => 15K wasted inside 25K partition
19

Fixed Partitioning with
Absolute Trandation: ProsCons

© Advantages:

» Simplicity
» Multiprogramming now possible

» Works with any hardware (8088, 68000, etc)

20

10

Fixed Partitioning with
Absolute Trand ation: Pros/Cons...

® Disadvantages:
= Job Size <= Max Partition Size <= MM Size

= Storage wasted due to internal fragmentation:

process size < partition size

» Storage wasted due to external fragmentation:

A partition may be idle because none of the jobs
assigned to it are being run

= Once compiled ajob can only be executed in designated
partition
21

Fixed (Static) Partitions with
Relative Address Trand ation

- Allows process to run in any free partition

- ALL Code generated using addresses
relative to zero

22

11

Defining Partitions

» Equal-size partitions
— Because all partitions are of equal size, it does not
matter which partition is used

» Unequal-size partitions
— Can assign each process to the smallest partition
within which it will fit
— Queue for each partition

— Processes are assigned in such away asto
minimize wasted memory within a partition

23

Allocating Processes to Partitions

Operating Operating
System System

I -—+
T —

TIIIITT—
IO —

New New
—
Processes T Processes

T —

IO —+

{a) One process queue per partition (b} Single queue

24

12

Fixed Partitions with
Relative Address Trandlation...

[lustration:
Let:
B denote base (absolute) address of a partition

L denote partition length
Base Reg

B

Address

B+L

QTP: Would Pointers work?
25

Partition @ “Virtual”

Multiprogramming Protection

Fixed partitions with relative addressing
supports multiprogramming protection

=> Ensure that one process does not access
memory space dedicated to another
process

Method:
Each relative address is compared to the
bounds register

26

13

Multiprogramming Protection...

Base Reg

Partition ®'7 Address

Bounds Reg

P

Error:
K
© [llegal Address

27

B “Virtual”

Fixed Partitioning with
Relative Addressing: Pros/Cons

© Advantage compared to absolute addressing:

= Dynamic allocation of programs to partitions improves
system performance

© Sll some disadvantages.
= Partition sizes are fixed at boot time
= Can't run process larger than largest partition
= Partition selection algorithm affects system performance
= Still hasinterna and external fragmentation

28

14

Dynamic Partitioning

 Partitions are of variable length and number

» Processis allocated exactly as much memory
asrequired

» Eventually get holesin the memory. Thisis
called external fragmentation

» Must use compaction to shift processes so they
are contiguous and all free memory isin one
block

29

Addressing Schemein
Dynamic Partitioning

Base Reg

Load Point\» : “0” relative
ZHRN | CO— oo,

. address
: p Base Reg +
Pgm Lngth
T F\‘ Bounds Reg
OK Error:

Illegal Address

30

15

Effects of Dynamic Partitioning

[Operating | o [Operatimg | [Dperating | [Operatimg |

[I I s
Process 1 206 Process 1 % 20 Process 1 %EOM
M Process 1 % 14M Process 2 1[14aM

10
230 Process 3 18M
Fam
(a) (b) (c) (dy
[Operating | [Operatimng | [perating | [Operatig |

1 M Process 1 0M

g 2=

2
2
i

B e .
2

L]

H

§

™ -
e ——

B BB

g

§
e

Dynamic Partitioning Placement
Algorithm

Operating system must decide which free block
to allocate to a process

e Best-fit algorithm
— Chooses the block that is closest in size to the
request
— Worst performer overall

— Since smallest block is found for process, the
smallest amount of fragmentation is left

— Memory compaction must be done more often

32

16

Dynamic Partitioning Placement
Algorithm

 First-fit algorithm
— Scans memory form the beginning and chooses the
first available block that islarge enough
— Fastest

— May have many process |loaded in the front end of
memory that must be searched over when trying to
find afree block

33

Dynamic Partitioning Placement

Algorithm
o Next-fit
— Scans memory from the location of the last
placement

— More often allocate a block of memory at the end
of memory where the largest block isfound

— The largest block of memory is broken up into
smaller blocks

— Compaction is required to obtain alarge block at
the end of memory

17

Reclaiming Space: Maximizing Block Size

Suppose process P1 finishes:
M er ge adjacent free blocks

FREE - 22 K

P, INUSE- 24K

R

FREE - 30K

P, UNUSE <10k

P,

FREE - 14 K

FREE - 76K

INVUSE < 10K

FREE - 14 K

Merging is relative inexpensive...

Keep list of “free” memory blocks

Merge adjacent blocks

35

Reclaiming Space: Maximizing Block Size

What if we cannot find a big enough hole for an arriving job?
Shuffle jobs to create larger contiguous free memory

JOHAASK

FREE (15K)

JohB20.K

FREE (10K)

Job.C7K

FREE (15K)

Compaction
X 15K
/ B 20K
(64 7K
Now 40 K job
: FREE 58K
can run

QTP: How about pointers?

36

18

Pros/Cons of Dynamic Partitions

© Advantages:
—Efficient memory usage

® Disadvantages:
— Partition Management
—Compaction or external fragmentation

—Internal fragmentation (if blocks composing
partions are are always allocated in fixed sized
units -- e.g. 2k)

37

The Move to Non-Contiguous Memory Space:
Multiple Segment Relocation Registers

Must we have
contiguous
memory to run CPU Compiler Generated
aprogram? “0” Relative Address
Consider: | Stack register | +

Code

Stack

Data

’ Memory Address Register ‘
Primary Memory

38

An Introduction to
Paging and Segmentation

39

Paging: Overview

* Partition memory into small equal fixed-size chunks
and divide each process into the same size chunks

» The chunks of a process are called pages and chunks
of memory are called frames

» Operating system maintains a page table for each
process
— Contains the frame location for each pagein the
process
— Memory address consist of a page number and offset
within the page

20

Assignment of Process Pages to Free Frames

LT Main memory Main memory Main memory
number
o L] A0 L] A0
1 1 A.l 1 A.l
2 2 A2 2 A2
3 3 A3 3 A3
4 4 4 B.A
5 5 5 B.1
6 [6 B.2
7 T T
.3 B B
9 9 9
10 10 10
11 11 11
12 1z 1z
13 13 13
14 14 14
(a) Fifteen Available Frames (b) Load Process A (c) Load Process B
41

Assignment of Process Pages to Free Frames

Main memory Main memory Main memory
0 A.D] A0] A0
1 Al 1 Al 1 Al
2 A2 2 A2 2 A2
3 A3 3 A3 3 A3
4 B.O 4 4 D
5 B.1 5 5 D.1
6 B.2 6 6 D.2
7 [7 (17 7 [
8 C.iv 8 C.1 8 Civ
9 C.2 o C.2 o C.2
10 |7 CA 10 &3 10 ¢ &AL
11 11 11 .2
12 12 12 D.4
13 13 13
14 14 14
(d) Load Process C (e) Swap out B (f) Load Process [
(suspended)

a2

Page Tables for Example

o[o0 0 N o[7 o[4
10 1 1] N 1| 8 1| 5
2 2 2 N 2] 9 2] 6 Free frame
3 =S Process B 310 311 liot
Process A page table Process C 4 12
page table page table Process D

page table

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

Segmentation Overview

All segments of all programs do not have to be
of the same length

— Segments usually correspond to program
procedures

There is a maximum segment length

Addressing consist of two parts - a segment
number and an offset

Since segments are not equal, segmentation is
similar to dynamic partitioning

22

Addressing Schemes

Logical address = Logical address =
Relative address — 1502 Paged# = 1, Offset =478 Segment# = 1, Offset =752
0000010111011110 [000001[0111011110 0001001011110000
*
e ¥y
*o g E'
P 5]
- - ~
£ N e
£ = 1
2= !
B & =8
=8 £ EE
~
& 5
& =3 \
£ =
(a) Partitioning E’E g (c) Segmentation
—2n
£

(b) Paging
(page size = 1K)

&

Paging:
Mapping the “0” Relative, Logical Address
to aPhysical Address

P 16-bit logical address

S Obitpage# | 10-bit offset » | Partitioning the “0” Relative,
[o]ofoJofofaJofa[alafolalal2l1]o] | Compiler Generated Address
___.—-—-.Y;—-—-—._.A.___.———-—...T-—————__.-/

0000101
#+7 [000110
2

Pagetable entry: FII00T
Contains Process
Page Frame Number page table

a’_—‘—-—-)‘-—-—'_‘v'—_—‘—————"A“-—-—-—‘-\
lojofol1]1fofolafa|1]ofafa|1]|1|0]

-+

16-bit physical address

PFN || Offset == PFN * 210 + Offset

23

Segmentation:
Mapping the “0” Relative, Logical Address
to aPhysical Address

P 16-bit logical address
4-bit segment # 12-bit offset

[o]ofof1]ofof1]ol1[1]1]2[ofo]o]0]
k_._.—-Y—-—-_L____-—-—-N,..—-———__.-/

>

Baseis starting address
| of segment in
physical memory

Length Base
0 [001011101110[0000010000000000]
1(011110011110[0020000000100000—————»
Process segment table

e
[oloj1ijofofof1i1i]ofofof1]olo]o]0]

No morethan 24-1 segments

L ength of segment cannot 16-bit physical address
be larger than 212

47

24

