
1

Concurrency: Deadlock and
Starvation

Chapter 6

2

What is Deadlock

• Permanent blocking of a set of processes that
either compete for system resources or
communicate with each other

• Involve conflicting needs for resources by
two or more processes

• No efficient solution

3

Deadlock Illustration

Resources: Quadrants a, b, c, d

4

Joint Progress Diagram

P has A
Q gets B

Q has B
P gets A

5

Joint Progress Diagram

No
Deadlock
Possible

6

Reusable Resources
• Used by only one process at a time and not depleted

by that use
• Processes obtain resources that they later release for

reuse by other processes
• Examples:

– Processors, I/O channels, main and secondary memory,
devices, and data structures such as files, databases, and
semaphores

• Deadlock occurs if each process holds one resource
and requests the other

7

Example of Deadlock

8

Another Example of Deadlock

• Space is available for allocation of
200Kbytes, and the following sequence of
events occur

• Deadlock occurs if both processes progress to
their second request

P1

. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2

. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;

9

Consumable Resources
• Created (produced) and destroyed (consumed)
• Examples:

– Interrupts, signals, messages, and info in I/O buffers

• Deadlock may occur if a Receive message is blocking

P1
. . .
. . .

Receive(P2);

Send(P2, M1);

P2
. . .
. . .

Receive(P1);

Send(P1, M2);

10

Resource Allocation Graphs
• Directed graph that depicts a state of the system of

resources and processes

11

Resource Allocation Graphs
3 units of Ra

2 units of Rb

12

Conditions for Deadlock

1. Mutual exclusion
– Only one process may use a resource at a time

2. Hold-and-wait
– A process may hold allocated resources while

awaiting assignment of others
3. No preemption

– No resource can be forcibly removed form a
process holding it

13

Conditions for Deadlock
4. Circular wait

– A closed chain of processes exists, such that each
process holds at least one resource needed by the next
process in the chain

14

Possibility of Deadlock

• Mutual Exclusion
• No preemption
• Hold and wait

15

Existence of Deadlock

• Mutual Exclusion
• No preemption
• Hold and wait
• Circular wait

16

Three Solutions to Deadlock

#1: Mr./Ms. Conservative (Prevention)

time

Job waits
for all resources

Job starts Job finishes

R2
R1 WAIT

“We had better not allocate if it could ever cause deadlock”

| R1 in use |

| R2 in use |

Process waits until all needed resource free
Resources underutilized

17

Three Solutions to Deadlock …

#2: Mr./Ms. Prudent (Avoidance)

time

Job starts Job first
needs R1

Job finishes

R2
R1

Job first
needs R2

Unsafe Safe

WAIT

“If resource is free and with its allocation we can still
guarantee that everyone will finish, use it.”

Better resource utilization
Process still waits

18

Three Solutions to Deadlock…

#3: Mr./Ms. Liberal (Detection/Recovery)

time

Job starts Job finishes

R2
R1

Job restarts

Deadlock detected

“If it’s free, use it -- why wait?”

Good resource utilization, minimal process wait time
Until deadlock occurs….

19

Names for The Three Methods

1) Deadlock Prevention

– Design system so possibility of deadlock avoided a priori

2) Deadlock Avoidance

– Design system so that if a resource request is made that could
lead to deadlock, then block requesting process.

– Requires knowledge of future resource requests by processes

3) Deadlock Detection and Recovery

– Algorithm to detect deadlock

– Recovery scheme

20

Deadlock Prevention

Deny one of the 4 necessary conditions

Mutual Exclusion
No preemption
Hold and wait
Circular wait

21

Deadlock Prevention

• Do not allow “Mutual Exclusion”
– Use only sharable resources

=> Impossible for practical systems

22

Deadlock Prevention …

• Prevent “Hold and Wait”
(a) Preallocation - process must request and be allocated

all of its required resources before it can start execution

(b) Process must release all of its currently held resources
and re-request them along with request for new
resources*

=> Very inefficient
=> Can cause "indefinite postponement": jobs needing

lots of resources may never run

23

Deadlock Prevention …
• Allow “Resource Preemption”

– Allowing one process to acquire exclusive rights
to a resource currently being used by a second
process

=> Some resources can not be preempted without
detrimental implications (e.g., printers, tape drives)

=> May require jobs to restart

24

Deadlock Prevention …

• Prevent Circular Wait

– Order resources and

– Allow requests to be made only in an increasing
order

25

Preventing Circular Wait

Process:

Request:

A B C D A B C D

W X Y Z X Y Z W

A / W

B / X

C / Y

D / Z

Impose an ordering on Resources: 1 W
2 X
3 Y
4 Z

Process D cannot request resource W
without voluntarily releasing Z first

After first 4 requests:

26

Problems with Linear Ordering Approach

(1) Adding a new resource that upsets ordering
requires all code ever written for system to
be modified!

(2) Resource numbering affects efficiency

=> A process may have to request a resource
well before it needs it, just because of the
requirement that it must request resources in
ascending sequence

27

Deadlock Avoidance
• OS never allocates resources in a way that could

lead to deadlock
=> Processes must tell OS in advance how many

resources they will request

• Process Initiation Denial
– Process is started only if maximum claim of all current

processes plus those of the new process can be met.

• Resource Allocation Denial
– Do not grant request if request might lead to deadlock

28

Resource Allocation Denial:
Banker’s Algorithm

• Banker's Algorithm runs each time:

– a process requests resource - Is it Safe?

– a process terminates - Can I allocate released resources to
a suspended process waiting for them?

• A new state is safe if and only if every process can
complete after allocation is made

=> Make allocation, then check system state and
de-allocate if safe/unsafe

29

Definition: Safe State

• State of a system
– An enumeration of which processes hold, are waiting for,

or might request which resources

• Safe state
– No process is deadlocked, and there exists no possible

sequence of future requests in which deadlock could occur.

or alternatively,

– No process is deadlocked, and the current state will not
lead to a deadlocked state

30

Deadlock Avoidance

Safe State:
Current Loan Max Need

Process 1 1 4
Process 2 4 6
Process 3 5 8

Available = 2

31

Deadlock Avoidance

Unsafe State:
Current Loan Max Need

Process 1 8 10

Process 2 2 5

Process 3 1 3

Available = 1

32

Safe to Unsafe Transition

Current Safe State:
Current Loan Maximum Need

Process 1 1 4

Process 2 4 6

Process3 5 8 Available = 2

Suppose Process 3 requests and gets one more resource
Current Loan Maximum Need

User1 1 4

User2 4 6

User3 6 8 Available = 1

Current state being safe
does not necessarily imply

future states are safe

33

Essence of Banker's Algorithm
• Find an allocation schedule satisfying maximum claims

that allows to complete jobs
=> Schedule exists iff safe

• Method: "Pretend" you are the CPU.
1. Scan table (PCB?) row by row and find a job that can finish

2. Add finished job's resources to number available.

Repeat 1 and 2 until
– all jobs finish (safe), or
– no more jobs can finish, but some are still “waiting” for their

maximum claim (resource) request to satisfied (unsafe)

34

Banker's Algorithm
Constants

int N {number of processes}

int Total_Units

int MaximumNeed[i]

Variables
int i {denotes a process}

int Available

int CurrentLoan[i]

boolean Cannot_Finish[i]

Function
Claim[i] = MaximumNeed[i] - CurrentLoan[i];

35

Banker's Algorithm
Begin

Available = Total_Units;

For i = 1 to N Do
Begin
Available = Available - CurrentLoan [i];
Cannot_Finish [i] = TRUE;
End;

i = 1;
while (i <= N) Do

begin
If (Cannot_Finish [i] AND Claim [i] <= Available)

Then Begin
Cannot_Finish [i] = False;
Available = Available + CurrentLoan [i];
i = 1;
End;

Else i = i+1;
End;

If (Available == Total_Units)
Then Return (SAFE)
Else Return (UNSAFE);

End;

Initialize

Find schedule to
complete all jobs

36

Banker's Example #1

Total_Units = 10 units
N = 3 processes

Process:

Request:

1 2 3 1

2 3 4 1

Process Current Maximum Claim Cannot
Loan Need Finish

1 4

2 4

3 8

Available =
i =

Can the fourth request be satisfied?

37

Banker's Example #2

Total_Units = 10 units
N = 3 processes

Process:

Request:

1 2 3 1

4 1 1 2

Available =
i =

Can the fourth request by satisfied?
Process Current Maximum Claim Cannot

Loan Need Finish
1 10

2 6

3 3

38

Determination of a Safe State
Multi-Resource Scenario

Is the resulting state (above) safe?
Is C[*]-A[*] <= V[*] ?

P2 -> P1 -> P3 -> P4

39

Determination of an Unsafe State
Multi-resource Scenario

40

Determination of an
Unsafe State

41

Deadlock Avoidance Logic

42

Deadlock Avoidance Logic

43

Banker's Algorithm: Summary

(+) PRO's:
☺ Deadlock never occurs.
☺More flexible & more efficient than deadlock prevention.

(Why?)

(-) CON's:
/Must know max use of each resource when job starts.

=> No truly dynamic allocation
/ Process might block even though deadlock would never
occur

44

Deadlock Detection

Allow deadlock to occur, then recognize that it exists

• Run deadlock detection algorithm whenever locked resource
is requested

• Could also run detector in background

45

Deadlock Detection

Set Avail’ [*] = Avail [*]
Remove process i from consideration if:

(a) Alloc [i,*] = 0, or
(b) Request [i,*] <= Avail’ [*]

Add Alloc [I,*] to Avail’ [*]

Processes not removed from consideration are blocked

P1 and P2
deadlocked

46

Strategies Once
Deadlock Detected

• Abort all deadlocked processes
• Back up each deadlocked process to some

previously defined checkpoint, and restart all
process
– Hoping alternate request sequence (non-determinism)
– However, original deadlock may still occur

• Successively abort deadlocked processes until
deadlock no longer exists
– Free up needed resources

47

Selection Criteria Aborting
Deadlocked Processes

• Least amount of processor time consumed so
far

• Least number of lines of output produced so
far

• Most estimated time remaining
• Least total resources allocated so far
• Lowest priority

48

Strengths and Weaknesses of the
Strategies

49

Dining Philosophers Problem

50

Dining Philosophers Problem

Each Philosopher request/gets fork(i)…
Deadlock

51

Dining Philosophers Problem

Limit number of Philosophers in dinning
room… No Deadlock

52

Dining
Philosophers:

Monitor
Solution

First
philosopher
entering
monitor is
guaranteed to
get both
forks….

Appropriate
waiting
philosopher
“woken” up

