
1

1

Concurrency: Mutual Exclusion
and Synchronization

Chapter 5

2

Concurrency
Concurrency arises in 3 different contexts:
• Multiple applications

– Multiprogramming: time slicing

• Structured applications
– Develop a single application as set of concurrent

processes

• Operating system structure
– Often implemented as set of processes or thereads

2

3

Concurrency: Related Terms

4

Difficulties with Concurrency

• Sharing of global resources
– Two processes reading from and writing to the

same global variable… sequence of R/W is crucial

• Operating system managing the allocation of
resources optimally
– Process A acquires resource R and blocks, Process

B wants resource R

• Difficult to locate programming errors
– Non-deterministic behavior

3

5

Currency: Design Issues

• Communication among processes

• Sharing resources

• Synchronization of multiple processes

• Allocation of processor time

6

A Simple Example

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

Global Char: chin, chout

“chin” in P1 is lost

4

7

Another Simple Example

Process P1 Process P2

. .

b = b + c c = b + c

. .

Global Char: b = 1, c = 2;

P1 then P2 => b = 3, c = 5
P2 then P1 => b = 4, c = 3

Race Condition

8

Operating System Concerns
• Keeping track of multiple and distinct processes
• Allocate and deallocate resources

– Processor time
– Memory
– Files
– I/O devices

• Protect data and resources
• Output of process must be independent of the speed

of execution of other concurrent processes
– Deterministic

5

9

Process Interaction
Given concurrency, how can processes

interact with each other?
• Processes unaware of each other

– Independent processes not intended to work together
– Compete for resources

• Processes indirectly aware of each other
– Share access to resources
– Sharing is cooperative

• Process directly aware of each other
– Designed to work jointly on some activity
– Sharing is cooperative

10

Resource Sharing Among
Concurrent Processes

• Mutual Exclusion
– Critical sections: used when accessing shared resource

• Only one program at a time is allowed in its critical section
• Example: one process at a time allowed to send command to printer

• Deadlock
– No computational progress can be made because a set of

processes are blocked waiting on processes that will never
be available

• Starvation
– A process’ resource request is never accommodated

6

11

Critical Section Problem (Revisited)

/* Code schema for p1 */

..

balance = balance + amount;

..

/* Code schema for p2 */

..

balance = balance - amount;

..

/* Schema for p1 */

/* X == balance */

load R1, X

load R2, Y

add R1, R2

store R1, X

/* Schema for p2 */

/* X == balance */

load R1, X

load R2, Y

sub R1, R2

store R1, X

shared float balance;

12

Critical Section Problem…

• Suppose:
– Execution sequence : 1, 2, 3

• Lost update : 2
– Execution sequence : 1, 4, 3 ,6

• Lost update : 3

• Together => non-determinacy

• Race condition exists

/* Schema for p1 */

load R1, X

load R2, Y

add R1, R2

store R1, X

1

3
5

/* Schema for p2 */

load R1, X

load R2, Y

sub R1, R2

store R1, X
6

4
2

7

13

Requirements for Mutual Exclusion

• Only one process at a time is allowed in the
critical section for a resource

• A process that halts in its noncritical section
must do so without interfering with other
processes

• No deadlock or starvation

14

Requirements for Mutual Exclusion

• A process must not be delayed when accessing
a critical section if there is no other process
using it

• No assumptions are made about relative
process speeds or number of processes

• A process remains inside its critical section for
a finite time only

8

15

Mutual Exclusion & Synchronization

Hardware Support

Interrupt
Test & Set
Exchange

16

Mutual Exclusion: Hardware Support

Interrupt Disabling
While (true)
{

disable-interrupts

critical section

enable-interrupts

}

– Processor is limited in its ability
to interleave programs

– Disabling interrupts guarantees
mutual exclusion

– Multiprocessor Environment
• disabling interrupts on one

processor will not guarantee mutual
exclusion

9

17

Critical Section Problem

/* Code schema for p1 */

..

disable-interrupts;

balance = balance + amount;

enable-interrupts;

..

/* Code schema for p2 */

..

disable-interrupts;

balance = balance - amount;

enable-interrupts

..

/* Schema for p1 */

Interrupts turned off

load R1, X

load R2, Y

add R1, R2

store R1, X

Interrupts turned on

/* Schema for p2 */

Interrupts turned off

load R1, X

load R2, Y

sub R1, R2

store R1, X

Interrupts turned on

shared float balance;

uninterruptible

18

Mutual Exclusion: Hardware Support

• Special Machine Instructions
– Performed in a single instruction cycle
– Performs memory access / manipulation
– No concurrent access to that memory location

• Instructions
– Test & Set
– Exchange

10

19

The “Test & Set” Instruction
boolean testset (int i) {

if (i == 0) {

i = 1;

return true;

}

else {

return false;

}

}

EXECUTED ATOMICALLY

20

The “Test & Set” Instruction

11

21

The “Exchange” Instruction

void exchange(int register, int memory)

{

int temp;

temp = memory;

memory = register;

register = temp;

}

EXECUTED ATOMICALLY

22

The “Exchange” Instruction

12

23

Mutual Exclusion Machine
Instructions

• Advantages
– Applicable to any number of processes on either a

single processor or multiple processors sharing
main memory

– It is simple and therefore easy to verify
– It can be used to support multiple critical sections

• Different variable set for each CR

24

Mutual Exclusion Machine
Instructions

• Disadvantages
– Busy-waiting consumes processor time
– Starvation is possible when a process leaves a

critical section and more than one process is
waiting.

– Deadlock
• If a low priority process has the critical region and a

higher priority process needs it, the higher priority
process will obtain the processor to wait for the critical
region

13

25

Mutual Exclusion & Synchronization

Language / OS Defined

The Semaphore

26

Semaphore
• Dijkstra, 1965

• Synchronization primitive with no busy
waiting

• It is an integer variable changed or tested by
one of the two indivisible operations

• Actually implemented as a protected variable
type
var x : semaphore

14

27

Semaphore operations
• semWait(S) operation (“wait”)

– Requests permission to use a critical resource

S := S – 1;
if (S < 0) then

put calling process on queue

• semSignal(S) operation (“signal”)
– Releases the critical resource

S := S + 1;
if (S <= 0) then

remove one process from queue

• Queues are associated with each semaphore variable

28

Semaphore : Example
Critical resource T

Semaphore S initial_value

Processes A,B

Process B

.

semWait(S);

<CS> /* access T */

semSignal(S);

.

Process A

.

semWait(S);

<CS> /* access T */

semSignal(S);

.

15

29

Semaphore : Example…
var S : semaphore 1

Queue associated with S

Value of S : 1

Process A

semWait(S);

<CS>

semSignal(S)
;

Process B

semWait(S);

<CS>

semSignal(S)
;

Process C

semWait(S);

<CS>

semSignal(S)
;

30

Types of Semaphores
• Binary Semaphores

– Maximum value is 1

• Counting Semaphores
– Maximum value is greater than 1

• Both use similar semWait and semSignal definitions

• Synchronizing code and initialization determines what
values are needed, and therefore, what kind of semaphore
will be used

The remaining discussion will focus primarily on
counting semaphores

16

31

(1) P1 => semWait(mutex)
Decrements; <0 ?; NO (0);
P1 Enters CS;
P1 interrupted

(2) P2 => semWait(mutex)
Decrements; <0 ?; YES (-1)
P2 blocks on mutex

Using Semaphores
proc_1() {

while(true) {

<compute section>;

semWait(mutex);
<critical section>;

semSignal(mutex);
}

}

proc_2() {
while(true) {

<compute section>;

semWait(mutex);
<critical section>;

semSignal(mutex);
}

}

Shared semaphore mutex <= 1;

(3) P1 finishes CS work
P1 => semSignal (mutex);

Increments; <=0 ?; YES (0)
P2 woken & proceeds

Non-Interruptible “Test & Sets”

32

Using Semaphores - Example 1
proc_0() {
...

semWait(mutex);

balance = balance + amount;
semSignal(mutex);

...

}

proc_1() {
…

semWait(mutex);

balance = balance - amount;
semSignal(mutex);

...

}

Shared semaphore mutex <= 1;

Note: Could use Interrupts to implement solution,
But (1) with interrupts masked off, what happens if

a prior I/O request is satisfied
(2) Interrupt approach would not work on Multiprocessor

Suppose P1 issues semWait(mutex) first
……

Suppose P2 issues semWait(mutex) first
……

No Problem

17

33

Using Semaphores – Example 2

• Cannot use Interrupt disable/enable here because we have multiple
distinct synchronization points

• Interrupt disable/enable can only distinguish 1 synchronization event

• Therefore, 2 Semaphores

proc_B() {
while(true) {

semWait(s1);

read(x);
<compute B1>;

write(y);

semSignal(s2);

<compute B2>;
}

}

B blocks
till A signals

B signals A
that
“write to y”
has completed

proc_A() {
while(true) {

<compute A1>;

write(x);
semSignal(s1);

<compute A2>;

SemWait(s2);

read(y);
}

}

A blocks
until B signals

A signals B
that “write to
x” has
completed

Shared semaphore: s1 <= 0, s2 <= 0; Note: values started at 0… ok?

34

Producer / Consumer Problem
(Classic)

• Critical resource
– Set of message buffers

• 2 Processes
– Producer : Creates a message and places it in the buffer
– Consumer : Reads a message and deletes it from the buffer

• Objective
– Allow the producer and consumer to run concurrently

18

35

P/C…
• Constraints

– Producer must have a non-full buffer to put its message into
– Consumer must have a non-empty buffer to read
– Mutually exclusive access to Buffer pool

• Unbounded Buffer problem
– Infinite buffers
– Producer never has to wait
– Not interesting nor practical

• Bounded Buffer Problem
– Limited set of buffers

36

P/C - Solution
Shared Full: semaphore 0;

Empty semaphore MaxBuffers;

MEPC: semaphore 1;

Begin

...

semWait(Empty);

semWait(MEPC);

<add item to buffer>

semSignal(MEPC);

semSignal(Full);

...

End;

Begin

...

semWait(Full);

semWait(MEPC);

<remove item from buffer>

semSignal(MEPC);

semSignal(Empty);

...

End;

Producer Consumer

X

X

XX

19

37

P/C – Another Look

Producer

Consumer

Pool of empty
Baskets

Pool full of Baskets

38

P/C – Another Look
• 9 Baskets – Bounded

• Consumer – Empties basket
– Can only remove basket from Full Pool, if one is there

=> Need “full” count
– Empties basket and places it in Empty pool

• Producer – Fills basket
– Can only remove basket from Empty pool, if one is there

=> Need “empty” count
– Fills basket and places it in Full pool

20

39

P/C - Another Look

producer() {

buf_type *next, *here;

while(True) {

produce_item(next);

semWait(empty); /*Claim empty buff*/

semWait(Emutex); /*Manipulate pool*/

here = obtain(empty);

semSignal(Emutex);

copy_buffer(next, here);

semWait(Fmutex); /*Manipulate pool*/

release(here, fullpool);

semSignal(Fmutex); /*Sgnl full buff*/

semSignal(full);

}

}

consumer() {

buf_type *next, *here;

while(True) {

semWait(full); /*Claim full buff*/

semWait(Fmutex); /*Manipulte pool*/

here = obtain(full);

semSignal(Fmutex);

copy_buffer(here, next);

semWait(Emutex); /*Manipulte pool*/

release(here, emptypool);

semSignal(Enmutex);/*Sgnl empt buf*/

semSignal(empty);

consume_item(next);

}

}

Shared semaphore: Emutex = 1, Fmutex = 1; full = 0, empty = 9;

Shared buf_type: buffer[9];

40

P/C - Example
• How realistic is P/C scenario?
• Consider a circular buffer

– 12 slots
– Producer points at next one it will

fill
– Consumer points at next one it will

empty

Producer

Consumer

• Don’t want :
Producer = Consumer
=> (1) Consumer “consumed” faster than

producer “produced”, or
(2) Producer “produced” faster than

consumer “consumed”.

Do we need to

synchronize

access to buffer?

21

41

P/C – Real World Scenario

• CPU can produce data faster than terminal
can accept or viewer can read

TerminalCPU

Communication buffers in both

Xon/Xoff Flow Control

42

Semaphores: Other Primitives

• S.queue: interrogate whether the queue is
empty or non-empty

• S.count: current semaphore value

Semaphore: S = 1;

22

43

Mutual Exclusion and Synchronization

Language Defined

The Monitor

44

Monitors
• Monitor is a software module

• Chief characteristics
– Local data variables are accessible only by the

monitor
– Process enters monitor by invoking one of its

procedures
– Only one process may be executing in the monitor

at a time

23

45

Monitor Structure

• Entrance only through
monitor procedure

• Condition variables allows
process suspension and
“removal” from monitor

Queue associated with each
condition variable

• Local data can only be
accesses through monitor
procedures

46

Producer / Consumer: Monitor Solution

void producer()
char x;
{

while (true)
{
produce(x);
append(x);
}

void consumer()
char x;
{

while (true)
{
take(x);
consume(x)
}

}
void main()
{

parbegin {produced, consumer};
}

monitor boundedbuffer;
char Buffer (N)

void append (char x)
{
:
:

}

void take (char x)
{
:
:

}

Monitor

24

47

Condition variables

Monitor initialization

Append to buffer

Take from buffer

Producer / Consumer
Monitor Solution

48

Monitor Accolades
• Provides equivalent functionality to that of

semaphore

• Monitor construct itself enforces mutual exclusion

• Abstract Data Type – data, procedures, encapsulation
– Initialization procedures
– Local data only accessible to monitor procedures
– Procedures (methods)

• All access and data manipulation defined / controlled
at one place

25

49

Mutual Exclusion & Synchronization

through

Message Passing

50

Message Passing
• Enforce mutual exclusion

• Exchange information

Typical Forms

send (destination, message)

receive (source, message)

26

51

Send / Receive Scenarios
• Send primitive is executed

– Sender is blocked until message is received, or
– Sender continues

• Receive primitive is issued
– Message previously sent, message received,

execution continues, or
– No message waiting and

• Process blocks until message arrives, or
• Process continues executing… abondons attempt to read

a message

52

Send / Receive Synchronization

• Blocking send, blocking receive
– Both sender and receiver are blocked until message is

delivered
– Called a rendezvous

• Nonblocking send, blocking receive
– Sender continues on
– Receiver is blocked until the requested message arrives

• Nonblocking send, nonblocking receive
– Neither party is required to wait

27

53

Direct Addressing
• Send primitive includes a specific identifier of the

destination process
– Send (452, Msg)

• Receive primitive could know ahead of time from
which process a message is expected
– Receive (384, &Msg)

• Receive primitive could use source parameter to
return a value when the receive operation has been
performed
– Receive (&PID, &Msg)

54

Indirect Addressing
Messages are sent to a shared data structure

NOT to a specified process

• Queues are called mailboxes / tuple-space

• One process sends a message to the mailbox
and the other process picks up the message
from the mailbox
– Mailboxes may / may not be tied to process

instances

28

55

• Private communication
link

• Connections through
ports

• Reduces potential
interference from other
processes

One to One

Many to One

• Client / Server
Applications

• Mail referred to as a
port

Indirect Addressing

56

One to Many

Many to Many

• One sender, multiple
receivers

• Broadcast

• Multiple Servers
providing concurrent
services to multiple
clients

Indirect Addressing

29

57

General Message Format

Allows for variable
length messages
(most common)

58

Achieving Mutual Exclusion via Messages

• Blocking
Receive / Send

• One message
- “token”

He who gets the
token, enters the
Critical Section

30

59

Solving the
P/C Problem

Send out “capacity”
mayproduce messages

wait
produce

signal

wait
consume

signal

60

Readers/Writers Problem
• Any number of readers may simultaneously

read the file

• Only one writer at a time may write to the file

• If a writer is writing to the file, no reader may
read it

31

61

Readers have Priority

• “x” guards updating of
readcount

• “wsem” informs writer process
if

- one or more readers
reading, or

- another writer writing

Reader Priority: As long as any
reader is “reading”, another
reader can enter to read

62

Writers Have Priority

