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Concurrency: Mutual Exclusion 
and Synchronization

Chapter 5
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Concurrency
Concurrency arises in 3 different contexts:
• Multiple applications

– Multiprogramming: time slicing

• Structured applications
– Develop a single application as set of concurrent 

processes

• Operating system structure
– Often implemented as set of processes or thereads
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Concurrency: Related Terms

4

Difficulties with Concurrency

• Sharing of global resources
– Two processes reading from and writing to the 

same global variable… sequence of R/W is crucial

• Operating system managing the allocation of 
resources optimally
– Process A acquires resource R and blocks, Process 

B wants resource R

• Difficult to locate programming errors
– Non-deterministic behavior
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Currency: Design Issues

• Communication among processes

• Sharing resources

• Synchronization of multiple processes

• Allocation of processor time
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A Simple Example

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

Global Char: chin, chout

“chin” in P1 is lost
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Another Simple Example

Process P1 Process P2

. .

b = b + c c = b + c

. .

Global Char: b = 1, c = 2;

P1 then P2 => b = 3, c = 5
P2 then P1 => b = 4, c = 3

Race Condition
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Operating System Concerns
• Keeping track of multiple and distinct processes
• Allocate and deallocate resources

– Processor time
– Memory
– Files
– I/O devices

• Protect data and resources
• Output of process must be independent of the speed 

of execution of other concurrent processes
– Deterministic
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Process Interaction
Given concurrency, how can processes 

interact with each other?
• Processes unaware of each other

– Independent processes not intended to work together
– Compete for resources

• Processes indirectly aware of each other
– Share access to resources
– Sharing is cooperative

• Process directly aware of each other
– Designed to work jointly on some activity
– Sharing is cooperative
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Resource Sharing Among 
Concurrent Processes

• Mutual Exclusion
– Critical sections: used when accessing shared resource

• Only one program at a time is allowed in its critical section
• Example: one process at a time allowed to send command to printer

• Deadlock
– No computational progress can be made because a set of 

processes are blocked waiting on processes that will never 
be available

• Starvation
– A process’ resource request is never accommodated
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Critical Section Problem (Revisited)

/* Code schema for p1 */

..

balance = balance + amount;

..

/* Code schema for p2 */

..

balance = balance - amount;

..

/* Schema for p1 */

/*  X == balance */

load R1, X

load R2, Y

add R1, R2

store R1, X

/* Schema for p2 */

/*  X == balance */

load R1, X

load R2, Y

sub R1, R2

store R1, X

shared float balance;
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Critical Section Problem…

• Suppose:
– Execution sequence : 1, 2, 3

• Lost update : 2
– Execution sequence : 1, 4, 3 ,6

• Lost update : 3

• Together => non-determinacy

• Race condition exists

/* Schema for p1 */

load R1, X

load R2, Y

add R1, R2

store R1, X

1

3
5

/* Schema for p2 */

load R1, X

load R2, Y

sub R1, R2

store R1, X
6

4
2
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Requirements for Mutual Exclusion

• Only one process at a time is allowed in the 
critical section for a resource

• A process that halts in its noncritical section 
must do so without interfering with other 
processes

• No deadlock or starvation
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Requirements for Mutual Exclusion

• A process must not be delayed when accessing 
a critical section if there is no other process 
using it

• No assumptions are made about relative 
process speeds or number of processes

• A process remains inside its critical section for 
a finite time only
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Mutual Exclusion & Synchronization

Hardware Support

Interrupt
Test & Set
Exchange
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Mutual Exclusion: Hardware Support

Interrupt Disabling
While (true)
{

disable-interrupts

critical section

enable-interrupts

}

– Processor is limited in its ability 
to interleave programs

– Disabling interrupts guarantees 
mutual exclusion

– Multiprocessor Environment
• disabling interrupts on one 

processor will not guarantee mutual 
exclusion



9

17

Critical Section Problem

/* Code schema for p1 */

..

disable-interrupts;

balance = balance + amount;

enable-interrupts;

..

/* Code schema for p2 */

..

disable-interrupts;

balance = balance - amount;

enable-interrupts

..

/* Schema for p1 */

Interrupts turned off

load R1, X

load R2, Y

add R1, R2

store R1, X

Interrupts turned on

/* Schema for p2 */

Interrupts turned off

load R1, X

load R2, Y

sub R1, R2

store R1, X

Interrupts turned on

shared float balance;

uninterruptible

18

Mutual Exclusion: Hardware Support

• Special Machine Instructions
– Performed in a single instruction cycle
– Performs memory access / manipulation  
– No concurrent access to that memory location

• Instructions
– Test & Set
– Exchange
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The “Test & Set” Instruction
boolean testset (int i) {

if (i == 0) {

i = 1;

return true;

}

else {

return false;

}

}

EXECUTED ATOMICALLY
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The “Test & Set” Instruction
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The “Exchange” Instruction

void exchange(int register, int memory)

{

int temp;

temp = memory;

memory = register;

register = temp;

}

EXECUTED ATOMICALLY
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The “Exchange” Instruction
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Mutual Exclusion Machine 
Instructions

• Advantages
– Applicable to any number of processes on either a 

single processor or multiple processors sharing 
main memory

– It is simple and therefore easy to verify
– It can be used to support multiple critical sections

• Different variable set for each CR
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Mutual Exclusion Machine 
Instructions

• Disadvantages
– Busy-waiting consumes processor time
– Starvation is possible when a process leaves a 

critical section and more than one process is 
waiting.  

– Deadlock
• If a low priority process has the critical region and a 

higher priority process needs it, the higher priority 
process will obtain the processor to wait for the critical 
region
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Mutual Exclusion & Synchronization

Language / OS Defined

The Semaphore
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Semaphore
• Dijkstra, 1965

• Synchronization primitive with no busy 
waiting

• It is an integer variable changed or tested by 
one of the two indivisible operations

• Actually implemented as a protected variable 
type
var x : semaphore
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Semaphore operations
• semWait(S) operation  (“wait”)

– Requests permission to use a critical resource

S := S – 1;
if (S < 0) then

put calling process on queue 

• semSignal(S) operation (“signal”)
– Releases the critical resource

S := S + 1;
if (S <= 0) then 

remove one process from queue 

• Queues are associated with each semaphore variable

28

Semaphore : Example
Critical resource T

Semaphore S initial_value

Processes A,B

Process B

.

semWait(S);

<CS> /* access T */

semSignal(S);

.

Process A

.

semWait(S);

<CS> /* access T */

semSignal(S);

.
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Semaphore : Example…
var S : semaphore 1

Queue associated with S

Value of S : 1

Process A

semWait(S);

<CS>

semSignal(S)
;

Process B

semWait(S);

<CS>

semSignal(S)
;

Process C

semWait(S);

<CS>

semSignal(S)
;
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Types of Semaphores
• Binary Semaphores

– Maximum value is 1

• Counting Semaphores
– Maximum value is greater than 1

• Both use similar semWait and semSignal definitions

• Synchronizing code and initialization determines what 
values are needed, and therefore, what kind of semaphore 
will be used

The remaining discussion will focus primarily on         
counting semaphores
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(1)  P1 => semWait(mutex)
Decrements;  <0 ?;   NO (0); 
P1 Enters CS;
P1 interrupted

(2)  P2 => semWait(mutex)
Decrements; <0 ?; YES (-1)
P2 blocks on mutex

Using Semaphores
proc_1() {

while(true) {

<compute section>;

semWait(mutex);
<critical section>;

semSignal(mutex);
}

}

proc_2() {
while(true) {

<compute section>;

semWait(mutex);
<critical section>;

semSignal(mutex);
}

}

Shared semaphore mutex <= 1;

(3)  P1 finishes CS work
P1 => semSignal (mutex); 

Increments; <=0 ?; YES (0)
P2 woken & proceeds

Non-Interruptible “Test & Sets”
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Using Semaphores - Example 1
proc_0() {
...

semWait(mutex);

balance = balance + amount;
semSignal(mutex);

...

}

proc_1() {
…

semWait(mutex);

balance = balance - amount;
semSignal(mutex);

...

}

Shared semaphore mutex <= 1;

Note: Could use Interrupts to implement solution, 
But (1) with interrupts masked off, what happens if

a prior I/O request is satisfied
(2) Interrupt approach would not work on Multiprocessor

Suppose P1 issues semWait(mutex) first 
……

Suppose P2 issues semWait(mutex) first 
……

No Problem



17

33

Using Semaphores – Example 2

• Cannot use Interrupt disable/enable here because we have multiple 
distinct synchronization points

• Interrupt disable/enable can only distinguish 1 synchronization event

• Therefore, 2 Semaphores

proc_B() {
while(true) {

semWait(s1);

read(x);
<compute B1>;   

write(y);

semSignal(s2);  

<compute B2>;
}

}

B blocks 
till A signals

B signals A 
that    
“write to y” 
has completed

proc_A() {
while(true) {

<compute A1>;   

write(x);
semSignal(s1); 

<compute A2>;

SemWait(s2);

read(y);
}

}

A blocks 
until B signals

A signals B 
that “write to 
x” has 
completed

Shared semaphore: s1 <= 0, s2 <= 0; Note: values started at 0… ok?
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Producer / Consumer Problem 
(Classic)

• Critical resource
– Set of message buffers

• 2 Processes
– Producer : Creates a message and places it in the buffer
– Consumer : Reads a message and deletes it from the buffer

• Objective
– Allow the producer and consumer to run concurrently
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P/C…
• Constraints

– Producer must have a non-full buffer to put its message into
– Consumer must have a non-empty buffer to read
– Mutually exclusive access to Buffer pool

• Unbounded Buffer problem
– Infinite buffers
– Producer never has to wait
– Not interesting nor practical

• Bounded Buffer Problem
– Limited set of buffers
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P/C - Solution
Shared Full: semaphore 0;

Empty semaphore MaxBuffers;

MEPC: semaphore 1;

Begin

...

semWait(Empty);

semWait(MEPC);

<add item to buffer>

semSignal(MEPC);

semSignal(Full);

...

End;

Begin

...

semWait(Full);

semWait(MEPC);

<remove item from buffer>

semSignal(MEPC);

semSignal(Empty);

...

End;

Producer Consumer

X

X

XX
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P/C – Another Look

Producer

Consumer

Pool of empty 
Baskets

Pool full of Baskets
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P/C – Another Look
• 9 Baskets – Bounded

• Consumer – Empties basket
– Can only remove basket from Full Pool, if one is there

=> Need “full” count
– Empties basket and places it in Empty pool

• Producer – Fills basket
– Can only remove basket from Empty pool, if one is there

=> Need “empty” count
– Fills basket and places it in Full pool
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P/C - Another Look

producer() {

buf_type *next, *here;

while(True) {

produce_item(next);

semWait(empty); /*Claim empty buff*/

semWait(Emutex); /*Manipulate pool*/

here = obtain(empty);

semSignal(Emutex);

copy_buffer(next, here);

semWait(Fmutex); /*Manipulate pool*/

release(here, fullpool);

semSignal(Fmutex); /*Sgnl full buff*/

semSignal(full);

}

}

consumer() {

buf_type *next, *here;

while(True) {

semWait(full); /*Claim full buff*/

semWait(Fmutex); /*Manipulte pool*/

here = obtain(full);

semSignal(Fmutex);

copy_buffer(here, next);

semWait(Emutex); /*Manipulte pool*/

release(here, emptypool);

semSignal(Enmutex);/*Sgnl empt buf*/

semSignal(empty);

consume_item(next);

}

}

Shared semaphore: Emutex = 1, Fmutex = 1; full = 0,  empty = 9; 

Shared buf_type: buffer[9];

40

P/C - Example
• How realistic is P/C scenario? 
• Consider a circular buffer

– 12 slots
– Producer points at next one it will 

fill
– Consumer points at next one it will 

empty

Producer

Consumer

• Don’t want : 
Producer = Consumer
=> (1) Consumer “consumed” faster than   

producer “produced”, or
(2) Producer “produced” faster than 

consumer “consumed”.

Do we need to 

synchronize 

access to buffer?
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P/C – Real World Scenario

• CPU can produce data faster than terminal 
can accept or viewer can read

TerminalCPU

Communication buffers in both

Xon/Xoff Flow Control
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Semaphores: Other Primitives

• S.queue:  interrogate whether the queue is 
empty or non-empty

• S.count: current semaphore value

Semaphore: S = 1;



22

43

Mutual Exclusion and Synchronization

Language Defined

The Monitor
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Monitors
• Monitor is a software module

• Chief characteristics
– Local data variables are accessible only by the 

monitor
– Process enters monitor by invoking one of its 

procedures
– Only one process may be executing in the monitor 

at a time
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Monitor Structure

• Entrance only through 
monitor procedure

• Condition variables allows 
process suspension and 
“removal” from monitor

Queue associated with each
condition variable

• Local data can only be 
accesses through monitor 
procedures
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Producer / Consumer: Monitor Solution

void producer()
char x;
{

while (true)
{
produce(x);
append(x);
}

void consumer()
char x;
{

while (true)
{
take(x);
consume(x)
}

}
void main()
{

parbegin {produced, consumer};
}

monitor boundedbuffer;
char Buffer (N)

void append (char x)
{
:
:

}

void take (char x)
{
:
:

}

Monitor
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Condition variables

Monitor initialization

Append  to buffer

Take from buffer

Producer / Consumer
Monitor Solution
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Monitor Accolades
• Provides equivalent functionality to that of 

semaphore

• Monitor construct itself enforces mutual exclusion

• Abstract Data Type – data, procedures, encapsulation 
– Initialization procedures
– Local data only accessible to monitor procedures
– Procedures (methods)

• All access and data manipulation defined / controlled 
at one place



25

49

Mutual Exclusion & Synchronization

through

Message Passing

50

Message Passing
• Enforce mutual exclusion

• Exchange information

Typical Forms

send (destination, message)

receive (source, message)
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Send / Receive Scenarios
• Send primitive is executed

– Sender is blocked until message is received, or
– Sender continues

• Receive primitive is issued
– Message previously sent, message received, 

execution continues, or
– No message waiting and

• Process blocks until message arrives, or
• Process continues executing… abondons attempt to read 

a message
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Send / Receive Synchronization

• Blocking send, blocking receive
– Both sender and receiver are blocked until message is 

delivered
– Called a rendezvous

• Nonblocking send, blocking receive
– Sender continues on
– Receiver is blocked until the requested message arrives

• Nonblocking send, nonblocking receive
– Neither party is required to wait
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Direct Addressing
• Send primitive includes a specific identifier of the 

destination process
– Send (452, Msg)

• Receive primitive could know ahead of time from 
which process a message is expected
– Receive (384, &Msg)

• Receive primitive could use source parameter to 
return a value when the receive operation has been 
performed
– Receive (&PID, &Msg)
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Indirect Addressing
Messages are sent to a shared data structure 

NOT to a specified process

• Queues are called mailboxes / tuple-space

• One process sends a message to the mailbox 
and the other process picks up the message 
from the mailbox
– Mailboxes may / may not be tied to process 

instances
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• Private communication 
link

• Connections through 
ports

• Reduces potential 
interference from other 
processes 

One to One

Many to One

• Client / Server 
Applications

• Mail referred to as a 
port

Indirect Addressing
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One to Many

Many to Many

• One sender, multiple 
receivers

• Broadcast 

• Multiple Servers 
providing concurrent 
services to multiple 
clients

Indirect Addressing
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General Message Format

Allows for variable 
length messages 
(most common)
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Achieving Mutual Exclusion via Messages

• Blocking 
Receive / Send

• One message
- “token”

He who gets the 
token, enters the 
Critical Section
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Solving the 
P/C Problem

Send out “capacity” 
mayproduce messages

wait
produce

signal

wait
consume

signal
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Readers/Writers Problem
• Any number of readers may simultaneously 

read the file

• Only one writer at a time may write to the file

• If a writer is writing to the file, no reader may 
read it
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Readers have Priority

• “x” guards updating of 
readcount

• “wsem” informs writer process 
if 

- one or more readers 
reading, or

- another writer writing

Reader Priority: As long as any 
reader is “reading”, another 
reader can enter to read
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Writers Have Priority


