
1

Concurrency: Mutual Exclusion
and Synchronization

Chapter 5

2

Concurrency
Concurrency arises in 3 different contexts:
• Multiple applications

– Multiprogramming: time slicing

• Structured applications
– Develop a single application as set of concurrent

processes

• Operating system structure
– Often implemented as set of processes or thereads

3

Concurrency: Related Terms

4

Difficulties with Concurrency

• Sharing of global resources
– Two processes reading from and writing to the

same global variable… sequence of R/W is crucial

• Operating system managing the allocation of
resources optimally
– Process A acquires resource R and blocks, Process

B wants resource R

• Difficult to locate programming errors
– Non-deterministic behavior

5

Currency: Design Issues

• Communication among processes

• Sharing resources

• Synchronization of multiple processes

• Allocation of processor time

6

A Simple Example

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

Global Char: chin, chout

“chin” in P1 is lost

7

Another Simple Example

Process P1 Process P2

. .

b = b + c c = b + c

. .

Global Char: b = 1, c = 2;

P1 then P2 => b = 3, c = 5
P2 then P1 => b = 4, c = 3

Race Condition

8

Operating System Concerns
• Keeping track of multiple and distinct processes
• Allocate and deallocate resources

– Processor time
– Memory
– Files
– I/O devices

• Protect data and resources
• Output of process must be independent of the speed

of execution of other concurrent processes
– Deterministic

9

Process Interaction
Given concurrency, how can processes

interact with each other?
• Processes unaware of each other

– Independent processes not intended to work together
– Compete for resources

• Processes indirectly aware of each other
– Share access to resources
– Sharing is cooperative

• Process directly aware of each other
– Designed to work jointly on some activity
– Sharing is cooperative

10

Resource Sharing Among
Concurrent Processes

• Mutual Exclusion
– Critical sections: used when accessing shared resource

• Only one program at a time is allowed in its critical section
• Example: one process at a time allowed to send command to printer

• Deadlock
– No computational progress can be made because a set of

processes are blocked waiting on processes that will never
be available

• Starvation
– A process’ resource request is never accommodated

11

Critical Section Problem (Revisited)

/* Code schema for p1 */

..

balance = balance + amount;

..

/* Code schema for p2 */

..

balance = balance - amount;

..

/* Schema for p1 */

/* X == balance */

load R1, X

load R2, Y

add R1, R2

store R1, X

/* Schema for p2 */

/* X == balance */

load R1, X

load R2, Y

sub R1, R2

store R1, X

shared float balance;

12

Critical Section Problem…

• Suppose:
– Execution sequence : 1, 2, 3

• Lost update : 2
– Execution sequence : 1, 4, 3 ,6

• Lost update : 3

• Together => non-determinacy

• Race condition exists

/* Schema for p1 */

load R1, X

load R2, Y

add R1, R2

store R1, X

1

3
5

/* Schema for p2 */

load R1, X

load R2, Y

sub R1, R2

store R1, X
6

4
2

13

Requirements for Mutual Exclusion

• Only one process at a time is allowed in the
critical section for a resource

• A process that halts in its noncritical section
must do so without interfering with other
processes

• No deadlock or starvation

14

Requirements for Mutual Exclusion

• A process must not be delayed when accessing
a critical section if there is no other process
using it

• No assumptions are made about relative
process speeds or number of processes

• A process remains inside its critical section for
a finite time only

15

Mutual Exclusion & Synchronization

Hardware Support

Interrupt
Test & Set
Exchange

16

Mutual Exclusion: Hardware Support

Interrupt Disabling
While (true)
{

disable-interrupts

critical section

enable-interrupts

}

– Processor is limited in its ability
to interleave programs

– Disabling interrupts guarantees
mutual exclusion

– Multiprocessor Environment
• disabling interrupts on one

processor will not guarantee mutual
exclusion

17

Critical Section Problem

/* Code schema for p1 */

..

disable-interrupts;

balance = balance + amount;

enable-interrupts;

..

/* Code schema for p2 */

..

disable-interrupts;

balance = balance - amount;

enable-interrupts

..

/* Schema for p1 */

Interrupts turned off

load R1, X

load R2, Y

add R1, R2

store R1, X

Interrupts turned on

/* Schema for p2 */

Interrupts turned off

load R1, X

load R2, Y

sub R1, R2

store R1, X

Interrupts turned on

shared float balance;

uninterruptible

18

Mutual Exclusion: Hardware Support

• Special Machine Instructions
– Performed in a single instruction cycle
– Performs memory access / manipulation
– No concurrent access to that memory location

• Instructions
– Test & Set
– Exchange

19

The “Test & Set” Instruction
boolean testset (int i) {

if (i == 0) {

i = 1;

return true;

}

else {

return false;

}

}

EXECUTED ATOMICALLY

20

The “Test & Set” Instruction

21

The “Exchange” Instruction

void exchange(int register, int memory)

{

int temp;

temp = memory;

memory = register;

register = temp;

}

EXECUTED ATOMICALLY

22

The “Exchange” Instruction

23

Mutual Exclusion Machine
Instructions

• Advantages
– Applicable to any number of processes on either a

single processor or multiple processors sharing
main memory

– It is simple and therefore easy to verify
– It can be used to support multiple critical sections

• Different variable set for each CR

24

Mutual Exclusion Machine
Instructions

• Disadvantages
– Busy-waiting consumes processor time
– Starvation is possible when a process leaves a

critical section and more than one process is
waiting.

– Deadlock
• If a low priority process has the critical region and a

higher priority process needs it, the higher priority
process will obtain the processor to wait for the critical
region

25

Mutual Exclusion & Synchronization

Language / OS Defined

The Semaphore

26

Semaphore
• Dijkstra, 1965

• Synchronization primitive with no busy
waiting

• It is an integer variable changed or tested by
one of the two indivisible operations

• Actually implemented as a protected variable
type
var x : semaphore

27

Semaphore operations
• semWait(S) operation (“wait”)

– Requests permission to use a critical resource

S := S – 1;
if (S < 0) then

put calling process on queue

• semSignal(S) operation (“signal”)
– Releases the critical resource

S := S + 1;
if (S <= 0) then

remove one process from queue

• Queues are associated with each semaphore variable

28

Semaphore : Example
Critical resource T

Semaphore S initial_value

Processes A,B

Process B

.

semWait(S);

<CS> /* access T */

semSignal(S);

.

Process A

.

semWait(S);

<CS> /* access T */

semSignal(S);

.

29

Semaphore : Example…
var S : semaphore 1

Queue associated with S

Value of S : 1

Process A

semWait(S);

<CS>

semSignal(S)
;

Process B

semWait(S);

<CS>

semSignal(S)
;

Process C

semWait(S);

<CS>

semSignal(S)
;

30

Types of Semaphores
• Binary Semaphores

– Maximum value is 1

• Counting Semaphores
– Maximum value is greater than 1

• Both use similar semWait and semSignal definitions

• Synchronizing code and initialization determines what
values are needed, and therefore, what kind of semaphore
will be used

The remaining discussion will focus primarily on
counting semaphores

31

(1) P1 => semWait(mutex)
Decrements; <0 ?; NO (0);
P1 Enters CS;
P1 interrupted

(2) P2 => semWait(mutex)
Decrements; <0 ?; YES (-1)
P2 blocks on mutex

Using Semaphores
proc_1() {

while(true) {
<compute section>;

semWait(mutex);
<critical section>;

semSignal(mutex);
}

}

proc_2() {

while(true) {
<compute section>;

semWait(mutex);
<critical section>;

semSignal(mutex);
}

}

Shared semaphore mutex <= 1;

(3) P1 finishes CS work
P1 => semSignal (mutex);

Increments; <=0 ?; YES (0)
P2 woken & proceeds

Non-Interruptible “Test & Sets”

32

Using Semaphores - Example 1
proc_0() {

...
semWait(mutex);

balance = balance + amount;
semSignal(mutex);
...

}

proc_1() {

…
semWait(mutex);

balance = balance - amount;
semSignal(mutex);
...

}

Shared semaphore mutex <= 1;

Note: Could use Interrupts to implement solution,
But (1) with interrupts masked off, what happens if

a prior I/O request is satisfied
(2) Interrupt approach would not work on Multiprocessor

Suppose P1 issues semWait(mutex) first
……

Suppose P2 issues semWait(mutex) first
……

No Problem

33

Using Semaphores – Example 2

• Cannot use Interrupt disable/enable here because we have multiple
distinct synchronization points

• Interrupt disable/enable can only distinguish 1 synchronization event

• Therefore, 2 Semaphores

proc_B() {

while(true) {
semWait(s1);

read(x);
<compute B1>;
write(y);

semSignal(s2);
<compute B2>;

}
}

B blocks
till A signals

B signals A
that
“write to y”
has completed

proc_A() {

while(true) {
<compute A1>;

write(x);
semSignal(s1);
<compute A2>;

SemWait(s2);
read(y);

}
}

A blocks
until B signals

A signals B
that “write to
x” has
completed

Shared semaphore: s1 <= 0, s2 <= 0; Note: values started at 0… ok?

34

Producer / Consumer Problem
(Classic)

• Critical resource
– Set of message buffers

• 2 Processes
– Producer : Creates a message and places it in the buffer
– Consumer : Reads a message and deletes it from the buffer

• Objective
– Allow the producer and consumer to run concurrently

35

P/C…
• Constraints

– Producer must have a non-full buffer to put its message into
– Consumer must have a non-empty buffer to read
– Mutually exclusive access to Buffer pool

• Unbounded Buffer problem
– Infinite buffers
– Producer never has to wait
– Not interesting nor practical

• Bounded Buffer Problem
– Limited set of buffers

36

P/C - Solution
Shared Full: semaphore 0;

Empty semaphore MaxBuffers;

MEPC: semaphore 1;

Begin

...

semWait(Empty);

semWait(MEPC);

<add item to buffer>

semSignal(MEPC);

semSignal(Full);

...

End;

Begin

...

semWait(Full);

semWait(MEPC);

<remove item from buffer>

semSignal(MEPC);

semSignal(Empty);

...

End;

Producer Consumer

X

X

XX

37

P/C – Another Look

Producer

Consumer

Pool of empty
Baskets

Pool full of Baskets

38

P/C – Another Look
• 9 Baskets – Bounded

• Consumer – Empties basket
– Can only remove basket from Full Pool, if one is there

=> Need “full” count
– Empties basket and places it in Empty pool

• Producer – Fills basket
– Can only remove basket from Empty pool, if one is there

=> Need “empty” count
– Fills basket and places it in Full pool

39

P/C - Another Look

producer() {

buf_type *next, *here;

while(True) {

produce_item(next);

semWait(empty); /*Claim empty buff*/

semWait(Emutex); /*Manipulate pool*/

here = obtain(empty);

semSignal(Emutex);

copy_buffer(next, here);

semWait(Fmutex); /*Manipulate pool*/

release(here, fullpool);

semSignal(Fmutex); /*Sgnl full buff*/

semSignal(full);

}

}

consumer() {

buf_type *next, *here;

while(True) {

semWait(full); /*Claim full buff*/

semWait(Fmutex); /*Manipulte pool*/

here = obtain(full);

semSignal(Fmutex);

copy_buffer(here, next);

semWait(Emutex); /*Manipulte pool*/

release(here, emptypool);

semSignal(Enmutex);/*Sgnl empt buf*/

semSignal(empty);

consume_item(next);

}

}

Shared semaphore: Emutex = 1, Fmutex = 1; full = 0, empty = 9;

Shared buf_type: buffer[9];

40

P/C - Example
• How realistic is P/C scenario?
• Consider a circular buffer

– 12 slots
– Producer points at next one it will

fill
– Consumer points at next one it will

empty

Producer

Consumer

• Don’t want :
Producer = Consumer
=> (1) Consumer “consumed” faster than

producer “produced”, or
(2) Producer “produced” faster than

consumer “consumed”.

Do we need to

synchronize

access to buffer?

41

P/C – Real World Scenario

• CPU can produce data faster than terminal
can accept or viewer can read

TerminalCPU

Communication buffers in both

Xon/Xoff Flow Control

42

Semaphores: Other Primitives

• S.queue: interrogate whether the queue is
empty or non-empty

• S.count: current semaphore value

Semaphore: S = 1;

43

Mutual Exclusion and Synchronization

Language Defined

The Monitor

44

Monitors
• Monitor is a software module

• Chief characteristics
– Local data variables are accessible only by the

monitor
– Process enters monitor by invoking one of its

procedures
– Only one process may be executing in the monitor

at a time

45

Monitor Structure

• Entrance only through
monitor procedure

• Condition variables allows
process suspension and
“removal” from monitor

Queue associated with each
condition variable

• Local data can only be
accesses through monitor
procedures

46

Producer / Consumer: Monitor Solution

void producer()
char x;
{

while (true)
{
produce(x);
append(x);
}

void consumer()
char x;
{

while (true)
{
take(x);
consume(x)
}

}
void main()
{

parbegin {produced, consumer};
}

monitor boundedbuffer;
char Buffer (N)

void append (char x)
{
:
:

}

void take (char x)
{
:
:

}

Monitor

47

Condition variables

Monitor initialization

Append to buffer

Take from buffer

Producer / Consumer
Monitor Solution

48

Monitor Accolades
• Provides equivalent functionality to that of

semaphore

• Monitor construct itself enforces mutual exclusion

• Abstract Data Type – data, procedures, encapsulation
– Initialization procedures
– Local data only accessible to monitor procedures
– Procedures (methods)

• All access and data manipulation defined / controlled
at one place

49

Mutual Exclusion & Synchronization

through

Message Passing

50

Message Passing
• Enforce mutual exclusion

• Exchange information

Typical Forms

send (destination, message)

receive (source, message)

51

Send / Receive Scenarios
• Send primitive is executed

– Sender is blocked until message is received, or
– Sender continues

• Receive primitive is issued
– Message previously sent, message received,

execution continues, or
– No message waiting and

• Process blocks until message arrives, or
• Process continues executing… abondons attempt to read

a message

52

Send / Receive Synchronization

• Blocking send, blocking receive
– Both sender and receiver are blocked until message is

delivered
– Called a rendezvous

• Nonblocking send, blocking receive
– Sender continues on
– Receiver is blocked until the requested message arrives

• Nonblocking send, nonblocking receive
– Neither party is required to wait

53

Direct Addressing
• Send primitive includes a specific identifier of the

destination process
– Send (452, Msg)

• Receive primitive could know ahead of time from
which process a message is expected
– Receive (384, &Msg)

• Receive primitive could use source parameter to
return a value when the receive operation has been
performed
– Receive (&PID, &Msg)

54

Indirect Addressing
Messages are sent to a shared data structure

NOT to a specified process

• Queues are called mailboxes / tuple-space

• One process sends a message to the mailbox
and the other process picks up the message
from the mailbox
– Mailboxes may / may not be tied to process

instances

55

• Private communication
link

• Connections through
ports

• Reduces potential
interference from other
processes

One to One

Many to One

• Client / Server
Applications

• Mail referred to as a
port

Indirect Addressing

56

One to Many

Many to Many

• One sender, multiple
receivers

• Broadcast

• Multiple Servers
providing concurrent
services to multiple
clients

Indirect Addressing

57

General Message Format

Allows for variable
length messages
(most common)

58

Achieving Mutual Exclusion via Messages

• Blocking
Receive / Send

• One message
- “token”

He who gets the
token, enters the
Critical Section

59

Solving the
P/C Problem

Send out “capacity”
mayproduce messages

wait
produce

signal

wait
consume

signal

60

Readers/Writers Problem
• Any number of readers may simultaneously

read the file

• Only one writer at a time may write to the file

• If a writer is writing to the file, no reader may
read it

61

Readers have Priority

• “x” guards updating of
readcount

• “wsem” informs writer process
if

- one or more readers
reading, or

- another writer writing

Reader Priority: As long as any
reader is “reading”, another
reader can enter to read

62

Writers Have Priority

