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Threads, SMP, and Microkernels

Chapter 4
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Current View of Process

• Process is a program in execution
• It has

– Execution environment
• address space, registers, etc

– Execution entity
• Code

• Currently thought of as a singular unit
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Current View of a Process:
Two Aspects

• Resource ownership - process includes a 
virtual address space to hold the process image

• Scheduling/execution- follows an execution 
path that may be interleaved with other 
processes

• However, these two characteristics are 
considered independently by the OS
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Rethinking the “Process”

• Thread - Unit of dispatching
– Computational entity +
– Thread-specific memory

• Process – Execution environment 
– Threads
– Resources available to all threads

• Memory, files
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Multithreading

Multiple threads of execution 
within a single process

• MS-DOS supports a single thread
• UNIX supports multiple user processes but 

only supports one thread per process
• Windows, Solaris, Linux, Mach, and OS/2 

support multiple threads within a process
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Multi-Threading
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Process? / Thread?
• Is there a difference in the way we NOW think 

about them?
=> YES!

• Loosely speaking
– Thread is the computational unit
– Process is the resources allocated to the thread, i.e., it’s 

computational environment,
• Well… almost

– Threads execute within, and are considered elements of 
a process
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Process – Earlier Perspective

Process  = 
Computational unit +
Computational Environment

Process / Thread –
New Perspective
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Thread

• Has an execution state (running, ready, etc.)
• Thread context saved when not running
• Has an execution stack
• Has some per-thread static storage for local 

variables

• Access to the memory and resources of its 
process
– all threads of a process share this
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Process

• Have a virtual address space which holds the 
process image
– Process Control Block
– User address space

• Thread accessible
– Thread + thread components *

• Has protected access to processors, other 
processes, files, and I/O resources
– Viz-a-viz the OS
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Benefits of Threads

• Takes less time to create a new thread than a 
process

• Less time to terminate a thread than a process
• Less time to switch between two threads 

within the same process
• Since threads within the same process share 

memory and files, they can communicate with 
each other without invoking the kernel
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Uses of Threads in a 
Single-User 

Multiprocessing System

• Foreground to background work
• Asynchronous processing

– Computation + polling
• Speed of execution

– Computation + I/O
• Modular program structure

– threads functions
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Process Implications w.r.t Threads

• Suspending a process involves suspending 
all threads of the process since all threads 
share the same address space
– Does blocking a thread stop the process, and 

subsequently, all other processes?
• ULT / KLT

• Termination of a process, terminates all 
threads within the process
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Thread States

• States associated with a change in thread state
– Spawn

• Spawn another thread

– Block
– Unblock
– Finish

• Deallocate register context and stacks
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Remote Procedure Calls Using a 
Single Threaded Process

Remote Procedure Calls Serialized
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Remote Procedure Call Using a 
Multi-Threaded Process
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Multithreading / MultiProcessing
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Multithreading / MultiProcessing

Who 
Should 
Get The 
Processor?

I/O Request
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User-Level vs. Kernel-Level 
Threads

• User-Level
– OS Not aware of their existence

• Kernel-Level
– OS IS Aware of their existence

• Considerations
– Who Schedules them for execution?
– Time Quantum allocation

• At Process or Thread level?

– Does Thread block cause Process to block?
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User-Level Threads

All thread 
management is done 
by the application

The kernel is not 
aware of the existence 
of threads
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OS:  Process B is executing
Application:  Thread 2 is executing

Thread 2 requests I/O
OS perceives request from Process
OS Blocks Process B

Note: Thread 2 still in 
“running” State!

ULTs explicitly issue 
block or yield to change 
states
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OS: Process B executing
App: Thread 2 executing

Quantum up for Process B
OS: Process B => Ready

Note:  
Thread 2 still in running 
state
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OS: Thread B executing
App: Thread 2 executing

Thread 2 intentionally issues 
block

ULT Lib: 
Thread 2 => Blocked State
Thread 1 => Running State

OS: Thread B still running
App: Thread 1 executing
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ULKs:  The Good , The Bad
• Advantages

– Thread level switching does not require kernel 
mode privildges (no Mode switching)

– Scheduling can be application specific
– ULT’s can run on any OS

• Disadvantages
– If a thread issues a system-level call that blocks 

thread, then entire Process blocks
– Cannot take advantage of Multiprocessor 

environment, e.g. SMP
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Kernel-Level Threads

Kernel maintains context 
information for both the 
process and the threads

Kernel (OS) schedules each 
thread individually 

Windows uses this approach
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KLT:  The Good, The Bad
• Advantages

– Thread management done by OS Kernel
– Scheduling at thread level, not process level
– In a multiprocessor environement we can have true 

concurrency
– If a thread issues a blocking system call, the other 

threads are not affected
• Disadvantages

– Transfer of control form one thread to another 
expensive

• Two Mode switches (U->K, K->U) : Context switch
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User-Level vs. Kernel-Level 
Threads (Revisited)

• User-Level: OS Not aware of their existence
• Kernel-Level: OS IS Aware of their existence

• Considerations
– Who Schedules them for execution?

– Time Quantum allocation
• At Process or Thread level?

– Does Thread block cause Process to block?
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Operational Overhead:
ULK vs KLT

Null Fork: OH of creating a thread
Signal Wait: OH in synchronizing two process/thread together

Implications: KLTs are expensive
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Combined Approaches Do Exist
SUN Solaris

Process created with single 
ULT thread running in user 
space

Additional ULT threads 
created in user space

ULTs are then mapped 
(transformed) into KLT –
controlled by application 
programmer 
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Categories of Computer Systems

• Single Instruction Single Data (SISD) 
stream
– Single processor executes a single instruction 

stream to operate on data stored in a single 
memory

• Single Instruction Multiple Data (SIMD) 
stream
– Each instruction is executed on a different set of 

data by the different processors
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Categories of Computer Systems

• Multiple Instruction Single Data (MISD) 
stream
– A sequence of data is transmitted to a set of 

processors, each of which executes a different 
instruction sequence.  Never implemented

• Multiple Instruction Multiple Data (MIMD)
– A set of processors simultaneously execute 

different instruction sequences on different data 
sets
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Parallel Processors: SIMD / MIMD
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Symmetric Multiprocessing

• Kernel can execute on any processor
• Kernel can be constructed as multiple 

processes/threads and execute concurrently

• Typically each processor does self-
scheduling from the pool of available 
process or threads
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Concurrent Access
(Multiported/Partitioned

Memories)

On Processor Chip
(fastest)

On Motherboard
(Faster than accessing 

memory)

Memory & Cache Organization
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Multiprocessor Operating System 
Design Considerations

• Kernel processes need to be re-entrant
– Simultaneous concurrent processes or threads

• Scheduling can be performed by more than one 
processor
– Need to avoid conflicts

• Synchronization
– Facility for mutual exclusion & event sequencing

• Memory management
– Concurrent access

• Reliability and fault tolerance
– Graceful degradation if one processor fails
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OS “Kernels”
• Monolithic

– Lacked structure
– Any procedure could call any other
– OS/360 1Mill SLOC, Multics 20 Mill Slocs

• Layered
– Structured, but everything still ran in Kernel mode

• Microkernels
– Only essential run in Kernel mode
– Remainder ran as services
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Layered Kernel

• Hierarchically 
organized

• Interaction between 
adjacent layers

• Most layers executed in 
Kernel mode

• Modifying code still a 
problem

• Security difficult (so 
many interfaces)
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Microkernels

• Small operating system core
• Contains only essential core 

OS functions
• Many traditional OS services 

now external subsystems
– Device drivers
– File systems

• Services implemented as 
server processes
– Message passing
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Benefits of a Microkernel 
Organization

• Uniform interface on request made by a process
– Don’t distinguish between kernel-level and user-level 

services
– All services are provided by means of message passing

• Extensibility
– Allows the addition of new services

• Flexibility
– New features easily added
– Existing features can be subtracted
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Benefits of a Microkernel 
Organization

• Portability
– Changes needed to port the system to a new 

processor is changed in the microkernel  - not in 
the other services

• Reliability
– Modular design
– Small microkernel can be rigorously tested
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Benefits of Microkernel 
Organization

• Distributed system support
– Message are sent without knowing what the target 

machine is

• Object-oriented operating system
– Components are objects with clearly defined 

interfaces that can be interconnected to form 
software
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Microkernel Design
• Low-level memory management

– Mapping each virtual page to a physical page frame
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Microkernel Components
• Low-level memory management

– Page fault initiates MK interupt

• Interprocess communication
– Port-based communication 
– (sender, message)

• I/O and interrupt management
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Windows Processes

• Process & Thread separate concepts
• Threads are kernel-based
• ULTs achieved through library calls
• An executable process may contain one or 

more threads
• Both processes and thread objects have built-in 

synchronization capabilities
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Windows Process Object Windows Thread Object
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Windows Thread States
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Solaris (SUN)
• Process includes the user’s address space, 

stack, and process control block

• User-level threads
– Library supported

• Lightweight processes (LWP)
– Associates ULT with KLT

• Kernel threads
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Traditional
Unix

Pure 
ULT

Multiplexed 
ULTs

Pure 
“KLT”s

Combo
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ULT can be in active 
state even if
LWP is blocked 
– no computation occurs

Managed through 
application by calls 
to library routines

Managed by OS Kernel
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Linux Process/Thread

• Classical view
– Process and Thread viewed as one entity
– Fork()

• creates “copy” of parent process
• Separate address space

• Modern view
– Multithreading
– Clone()

• Shares address space, resources, code
• Individual thread stack, PSW
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Block state: waiting directly on 
hardware event

Block state - waiting 
on event signaled 
through interrupt

Process terminated, 
task structure still 
in process table

Linux Process/Thread Model


