
1

1

Threads, SMP, and Microkernels

Chapter 4

2

Current View of Process

• Process is a program in execution
• It has

– Execution environment
• address space, registers, etc

– Execution entity
• Code

• Currently thought of as a singular unit

2

3

Current View of a Process:
Two Aspects

• Resource ownership - process includes a
virtual address space to hold the process image

• Scheduling/execution- follows an execution
path that may be interleaved with other
processes

• However, these two characteristics are
considered independently by the OS

4

Rethinking the “Process”

• Thread - Unit of dispatching
– Computational entity +
– Thread-specific memory

• Process – Execution environment
– Threads
– Resources available to all threads

• Memory, files

3

5

Multithreading

Multiple threads of execution
within a single process

• MS-DOS supports a single thread
• UNIX supports multiple user processes but

only supports one thread per process
• Windows, Solaris, Linux, Mach, and OS/2

support multiple threads within a process

6

Multi-Threading

4

7

Process? / Thread?
• Is there a difference in the way we NOW think

about them?
=> YES!

• Loosely speaking
– Thread is the computational unit
– Process is the resources allocated to the thread, i.e., it’s

computational environment,
• Well… almost

– Threads execute within, and are considered elements of
a process

8

Process – Earlier Perspective

Process =
Computational unit +
Computational Environment

Process / Thread –
New Perspective

5

9

Thread

• Has an execution state (running, ready, etc.)
• Thread context saved when not running
• Has an execution stack
• Has some per-thread static storage for local

variables

• Access to the memory and resources of its
process
– all threads of a process share this

10

Process

• Have a virtual address space which holds the
process image
– Process Control Block
– User address space

• Thread accessible
– Thread + thread components *

• Has protected access to processors, other
processes, files, and I/O resources
– Viz-a-viz the OS

6

11

Benefits of Threads

• Takes less time to create a new thread than a
process

• Less time to terminate a thread than a process
• Less time to switch between two threads

within the same process
• Since threads within the same process share

memory and files, they can communicate with
each other without invoking the kernel

12

Uses of Threads in a
Single-User

Multiprocessing System

• Foreground to background work
• Asynchronous processing

– Computation + polling
• Speed of execution

– Computation + I/O
• Modular program structure

– threads functions

7

13

Process Implications w.r.t Threads

• Suspending a process involves suspending
all threads of the process since all threads
share the same address space
– Does blocking a thread stop the process, and

subsequently, all other processes?
• ULT / KLT

• Termination of a process, terminates all
threads within the process

14

Thread States

• States associated with a change in thread state
– Spawn

• Spawn another thread

– Block
– Unblock
– Finish

• Deallocate register context and stacks

8

15

Remote Procedure Calls Using a
Single Threaded Process

Remote Procedure Calls Serialized

16

Remote Procedure Call Using a
Multi-Threaded Process

9

17

Multithreading / MultiProcessing

18

Multithreading / MultiProcessing

Who
Should
Get The
Processor?

I/O Request

10

19

User-Level vs. Kernel-Level
Threads

• User-Level
– OS Not aware of their existence

• Kernel-Level
– OS IS Aware of their existence

• Considerations
– Who Schedules them for execution?
– Time Quantum allocation

• At Process or Thread level?

– Does Thread block cause Process to block?

20

User-Level Threads

All thread
management is done
by the application

The kernel is not
aware of the existence
of threads

11

21

OS: Process B is executing
Application: Thread 2 is executing

Thread 2 requests I/O
OS perceives request from Process
OS Blocks Process B

Note: Thread 2 still in
“running” State!

ULTs explicitly issue
block or yield to change
states

22

OS: Process B executing
App: Thread 2 executing

Quantum up for Process B
OS: Process B => Ready

Note:
Thread 2 still in running
state

12

23

OS: Thread B executing
App: Thread 2 executing

Thread 2 intentionally issues
block

ULT Lib:
Thread 2 => Blocked State
Thread 1 => Running State

OS: Thread B still running
App: Thread 1 executing

24

ULKs: The Good , The Bad
• Advantages

– Thread level switching does not require kernel
mode privildges (no Mode switching)

– Scheduling can be application specific
– ULT’s can run on any OS

• Disadvantages
– If a thread issues a system-level call that blocks

thread, then entire Process blocks
– Cannot take advantage of Multiprocessor

environment, e.g. SMP

13

25

Kernel-Level Threads

Kernel maintains context
information for both the
process and the threads

Kernel (OS) schedules each
thread individually

Windows uses this approach

26

KLT: The Good, The Bad
• Advantages

– Thread management done by OS Kernel
– Scheduling at thread level, not process level
– In a multiprocessor environement we can have true

concurrency
– If a thread issues a blocking system call, the other

threads are not affected
• Disadvantages

– Transfer of control form one thread to another
expensive

• Two Mode switches (U->K, K->U) : Context switch

14

27

User-Level vs. Kernel-Level
Threads (Revisited)

• User-Level: OS Not aware of their existence
• Kernel-Level: OS IS Aware of their existence

• Considerations
– Who Schedules them for execution?

– Time Quantum allocation
• At Process or Thread level?

– Does Thread block cause Process to block?

28

Operational Overhead:
ULK vs KLT

Null Fork: OH of creating a thread
Signal Wait: OH in synchronizing two process/thread together

Implications: KLTs are expensive

15

29

Combined Approaches Do Exist
SUN Solaris

Process created with single
ULT thread running in user
space

Additional ULT threads
created in user space

ULTs are then mapped
(transformed) into KLT –
controlled by application
programmer

30

Categories of Computer Systems

• Single Instruction Single Data (SISD)
stream
– Single processor executes a single instruction

stream to operate on data stored in a single
memory

• Single Instruction Multiple Data (SIMD)
stream
– Each instruction is executed on a different set of

data by the different processors

16

31

Categories of Computer Systems

• Multiple Instruction Single Data (MISD)
stream
– A sequence of data is transmitted to a set of

processors, each of which executes a different
instruction sequence. Never implemented

• Multiple Instruction Multiple Data (MIMD)
– A set of processors simultaneously execute

different instruction sequences on different data
sets

32

Parallel Processors: SIMD / MIMD

17

33

Symmetric Multiprocessing

• Kernel can execute on any processor
• Kernel can be constructed as multiple

processes/threads and execute concurrently

• Typically each processor does self-
scheduling from the pool of available
process or threads

34

Concurrent Access
(Multiported/Partitioned

Memories)

On Processor Chip
(fastest)

On Motherboard
(Faster than accessing

memory)

Memory & Cache Organization

18

35

Multiprocessor Operating System
Design Considerations

• Kernel processes need to be re-entrant
– Simultaneous concurrent processes or threads

• Scheduling can be performed by more than one
processor
– Need to avoid conflicts

• Synchronization
– Facility for mutual exclusion & event sequencing

• Memory management
– Concurrent access

• Reliability and fault tolerance
– Graceful degradation if one processor fails

36

OS “Kernels”
• Monolithic

– Lacked structure
– Any procedure could call any other
– OS/360 1Mill SLOC, Multics 20 Mill Slocs

• Layered
– Structured, but everything still ran in Kernel mode

• Microkernels
– Only essential run in Kernel mode
– Remainder ran as services

19

37

Layered Kernel

• Hierarchically
organized

• Interaction between
adjacent layers

• Most layers executed in
Kernel mode

• Modifying code still a
problem

• Security difficult (so
many interfaces)

38

Microkernels

• Small operating system core
• Contains only essential core

OS functions
• Many traditional OS services

now external subsystems
– Device drivers
– File systems

• Services implemented as
server processes
– Message passing

20

39

Benefits of a Microkernel
Organization

• Uniform interface on request made by a process
– Don’t distinguish between kernel-level and user-level

services
– All services are provided by means of message passing

• Extensibility
– Allows the addition of new services

• Flexibility
– New features easily added
– Existing features can be subtracted

40

Benefits of a Microkernel
Organization

• Portability
– Changes needed to port the system to a new

processor is changed in the microkernel - not in
the other services

• Reliability
– Modular design
– Small microkernel can be rigorously tested

21

41

Benefits of Microkernel
Organization

• Distributed system support
– Message are sent without knowing what the target

machine is

• Object-oriented operating system
– Components are objects with clearly defined

interfaces that can be interconnected to form
software

42

Microkernel Design
• Low-level memory management

– Mapping each virtual page to a physical page frame

22

43

Microkernel Components
• Low-level memory management

– Page fault initiates MK interupt

• Interprocess communication
– Port-based communication
– (sender, message)

• I/O and interrupt management

44

Windows Processes

• Process & Thread separate concepts
• Threads are kernel-based
• ULTs achieved through library calls
• An executable process may contain one or

more threads
• Both processes and thread objects have built-in

synchronization capabilities

23

45

Windows Process Object Windows Thread Object

46

Windows Thread States

24

47

Solaris (SUN)
• Process includes the user’s address space,

stack, and process control block

• User-level threads
– Library supported

• Lightweight processes (LWP)
– Associates ULT with KLT

• Kernel threads

48

Traditional
Unix

Pure
ULT

Multiplexed
ULTs

Pure
“KLT”s

Combo

25

49

50

ULT can be in active
state even if
LWP is blocked
– no computation occurs

Managed through
application by calls
to library routines

Managed by OS Kernel

26

51

Linux Process/Thread

• Classical view
– Process and Thread viewed as one entity
– Fork()

• creates “copy” of parent process
• Separate address space

• Modern view
– Multithreading
– Clone()

• Shares address space, resources, code
• Individual thread stack, PSW

52

Block state: waiting directly on
hardware event

Block state - waiting
on event signaled
through interrupt

Process terminated,
task structure still
in process table

Linux Process/Thread Model

