
1

CS 3204: Operating Systems 1

Process & Process Descriptor (PCB)

Interface provided by OS

Files, etc.
PC, status,

exec time priority

Code

Static variables

Contents of a descriptor maps directly to the Abstract Machine
provided by the OS

• Dynamically allocated variables

• Runtime stack

Tape drive,
memory

CS 3204: Operating Systems 2

One Program / Multiple Instantiations

Distinct
execution paths

=> PC?

Note:

Each Process has its
own descriptor
- text (shared), data…

Only one process
active at a time
(context switching)

2

CS 3204: Operating Systems 3

UNIX Parent and Child Processes

Shared
Program Text

Shared Files
& Resources

Parent process

Child processes

CS 3204: Operating Systems 4

Thread (Child Process)

Thread: light-weight process
OS maintains minimal internal state information

Usually instantiated from a process

Each thread has its OWN unique descriptor
Stack, Thread Status Word (TSW)

SHARES with the parent process (and other threads)
Program text
Files & Resources
Parent process data segment

3

CS 3204: Operating Systems 5

Thread …

Unique for each thread

Minimal info

=> Light-weight

Shared components

Only 1 copy of
descriptor in OS

Each thread is
sharing/executing the
EXACT same code

CS 3204: Operating Systems 6

Process creation - fork()… example

int pidValue;

..

pidValue = fork(); /* creates a child process */

If(pidValue == 0) {

/* pidValue is ZERO for child, nonzero for parent */

/* The child executes this code concurrently with Parent */

childsPlay(..); /* A locally-liked procedure */

exit(0); /* Terminate the child */

}

/* The Parent executes this code concurrently with the child */

..

wait(..); /* Parent waits for Child’s to terminate */

UNIX process creation : fork() facility

4

CS 3204: Operating Systems 7

Process creation – Unix fork()…

Child/Parent code executed based on the pid value in “local” data
space

For parent process, pid value returned is that of the child (non-zero)
For child process, pid value returned is 0

pidvalue returned to parent process is non-Zero

Therefore, fork() creates a new LW process

fork()
Parent process (HW)

Child process (LW)
Initial process

CS 3204: Operating Systems 8

Process Creation – Unix exec()

Turns LW process into autonomous HW process

fork()
Creates new process

exec()
Brings in new program to be executed by that process

New text, data, stack, resources, PSW, etc.
BUT using same (expanded) process descriptor entries

In effect, the “exec’ed” code overlays “exec’ing” code

5

CS 3204: Operating Systems 9

Process creation – exec()… example

int pid;

..

/* Setup the argv array for the child */

..

if((pid = fork()) == 0) { /* Create a child */

/* The child process executes changes to its own program */

execve(new_program.out , argv , 0);

/*Only return from an execve call if it fails */

printf(“Error in execve”);

exit(0); /* Terminate the child */

}

/* Parent executes this code */

..

wait(..); /* Parent waits for Child’s to terminate */

UNIX process creation: exec() facility

