Process & Process Descriptor (PCB)

Contents of a descriptor maps directly to the Abstract Machine
provided by the OS

Static variables . .
« Dynamically allocated variables

e Runtime stack
| FIGURE 24 |

UNIX Processes

Code)
Tape drive,

/ memory

PC, status, .
Files, etc.

exec time priority

Interface provided by OS

CS 3204: Operating Systems 1

One Program / Multiple Instantiations

FIGURE 2.3

Sequential Operation

Trace for P1

Distinct Trace for P2
execution paths race for P:
K i Note:
Process |
== pPC? B Each Process has its

own descriptor
- text (shared), data...

Only one process
frocces active at a time
Shared Program Text (COnteXt SWltCh|ng)

Process 3

CS 3204: Operating Systems 2

UNIX Parent and Child Processes

Child processes

Shared Files
& Resources

Shared
Program Text

Parent process

CS 3204: Operating Systems

Thread (Child Process)

= Thread: light-weight process
= OS maintains minimal internal state information

= Usually instantiated from a process

» Each thread has its OWN unique descriptor
= Stack, Thread Status Word (TSW)

= SHARES with the parent process (and other threads)
= Program text
= Files & Resources
= Parent process data segment

CS 3204: Operating Systems 4

Thread ...

Unique for each thread

A Process and a Family of Threads

Minimal info

=> Light-weight

Each thread is
sharing/executing the
EXACT same code

Shared componeV

Only 1 copy of
descriptor in OS

CS 3204: Operating Systems

Process creation - fork()... example

int pidvalue;
pidvValue = forkQ); /* creates a child process */
I1f(pidvalue == 0) {
/* pidvValue is ZERO for child, nonzero for parent */
/* The child executes this code concurrently with Parent */
childsPlay(..); /* A locally-liked procedure */
exit(0); /* Terminate the child */
3
/* The Parent executes this code concurrently with the child */
wait(..); /* Parent waits for Child’s to terminate */

UNIX process creation : fork() facility

CS 3204: Operating Systems

Process creation — Unix fork()...

Child/Parent code executed based on the pid value in “local” data
space
= For parent process, pid value returned is that of the cA//d (non-zero)
= For child process, pid value returned is 0

pidvalue returned to parent process is hon-Zero

Therefore, fork() creates a new LW process

Parent process (HW)
Q fork()
Q Child process (LW)

Initial process

CS 3204: Operating Systems 7

Process Creation — Unix exec()

= Turns LW process into autonomous HW process

s fork()
= Creates new process

n exec()
= Brings in new program to be executed by that process

= New text, data, stack, resources, PSW, etc.
BUT using same (expanded) process descriptor entries

In effect, the “exec’ed” code overlays “exec’ing” code

CS 3204: Operating Systems 8

Process creation — exec()... example

int pid;

/* Setup the argv array for the child */

if((pid = fork(Q)) == 0) { /* Create a child

/* The child process executes changes to its own program
execve(new_program.out , argv , 0);
/*0Only return from an execve call if it fails

printf(“Error in execve”);

exit(0); /* Terminate the child
3
/* Parent executes this code */
wait(..); /* Parent waits for Child’s to terminate

*/
*/

*/

*/

*/

UNIX process creation: exec() facility

CS 3204: Operating Systems

