Process Description and Control

Chapter 3

Process Related Requirements
for an Operating System

Interleave the execution of multiple
processes to maximize processor
utilization while providing reasonable
response time

Allocate resources to processes

Support interprocess communication and
user creation of processes

“Operational” Concepts

Computer platform consists of a collection of
hardware resources

Computer applications are developed to perform
some task

Inefficient for applications to be written directly for a
given hardware platform

OS provides a convenient to use, feature rich, secure,
and consistent interface for applications to use

OS provides a uniform, abstract representation of
resources that can be requested and accessed by
application

OS Manages Execution of
Applications

* Resources made available to multiple
applications

e Processor Is switched among multiple
application

* The processor and 1/O devices can be used
efficiently

Views of a “Process”

A program In execution

An instance of a program running on a
computer

The entity that can be assigned to and
executed on a processor

A unit of activity characterized by the
execution of a sequence of Instructions, a
current state, and an assoclated set of system
Instructions

Process Elements

|dentifier — number

State — run / blocked / eady

Priority — high / low

Program counter — next statement to execute
Memory pointers

Context data — registers, stack

|/O status information

Accounting information

Process Control Block

The OS data Structure defining a process

e Contains the process elements
— 1d, state, priority, PC

» Created and manage by the operating system

 Allows support for multiple processes
— One PCB / PD for each process

Process Control Block

Identifier

State

Priority

Program counter

Memory pointers

Context data

1/0) status
information

Accounting
information

Example Execution

Address Nain Memory Program Counter
0 | 8000y |
100
Dispatcher
S000
Process A
8000 ’
Process B
12000
Process C

Trace of Processes

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

(a) Trace of Process A

3000
3001
8002
8003

(b) Trace of Process B

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

(c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

10

Dispatcher
100 - 105

Processes Traces w/ Interleaving

A

L N o N R

16

5000
5001
5002
5003
5004
5005

--------------- 1/0 request

17
18
19
20
21

100
101
102
103
104
105
12000
12001
12002
12003

27 12004

28 12005
—————————————————— Time out
20 100

0 10

31 102

32 103

313 104

34 105

35 3006

36 3007

37 3008

38 5000 A
30 3010

40 5011
------------------ Time out
41 100

42 101

43 102

44 103

45 104

46 105

47 12006

48 12007

40 12008

50 12000 (:
51 12010

52 12011

11

Two-State Process Model

* In an FSM each state has a unique meaning

* Process may be in one of two states
— Running
— Not-running

Dispatch

/\

Enter Mol Exit

Running Running

"\//

Pause

12

Not-Running Processes in a Queue
(Ready Queue)

Ready Run
But not running
Queune
Enter] Dispatch Exit
e | Processor -
i | —
Pause

(b) Queuning diagram

13

Reasons for Process Creation

New batch job

Interactive logon

Created by OS to provide a service

Spawned by existing process

The operating system is provided with a batch job control
stream, usually on tape or disk. When the operating svstem
is prepared to take on new work, it will read the next
sequence of job control commands.

A user at a terminal logs on to the system.
The operating system can create a process to perform a
function on behalf of a user program, without the user

having to wait (e g, a process to control printing).

For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

14

Reasons for Process Termination

Normal completion

Time limit exceeded

Memory unavailable

Bounds violation

Protection error

Arithmetic error

The process executes an OS5 service call to indicate that it has
completed running.

The process has run longer than the specified total time limit_
There are a number of possibilities for the type of time that is
measured. These include total elapsed time ("wall clock time"),
amount of time spent executing, and, in the case of an interactive
process, the amount of time since the user last provided anv input.

The process requires more memory than the system can provide.

The process tries to access a memory location that it is not allowed
to access.

The process attempts to use a resource such as a file that it is not
allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-only file.

The process tries a prohibited computation, such as division by
Zero, of tries to store numbers larger than the hardware can
accommodate.

2 State Process Model Insufficient

. h .
e Not-running Non-executing process
_ ready to execute can be In either state
>
* Blocked A single queue for both
— waiting for 1/0) IS not sufficient

 Dispatcher cannot just select the process that
has been In the queue the longest because It
may be blocked

16

A Five-State Model

Running
— Memory + Processor

Ready
— Memory, not Blocked, not in Processor

Blocked
— Memory + Blocked

New
— Job arrival, PCB(?), no memory allocated

Exit

17

Five-State Process Model

Blocked

18

Process States

-
-‘-‘-‘
*

L

]
3
‘* *

i“i LoD

o
£y
Mttt

#
(]

5

Process A

Process B

Process C

Dispatcher

40

LF]
g}

20

10

ing

Runni

19

New

5-State Process Model

(An Implementation Perspective)

Ready Queune Release -
Admit Dispatch | = EXit
‘ - | Processor
Timeout
-l
Blocked Queune
Event - Event Wait
Occurs

(a) Single blocked quene

20

More
Efficient

Check queue
associated with
event occurrence

Multiple Blocked Queues

Release

Ready Queue
Admit Dispatch
o Processor
A
Timeout
it
Event 1 Quene P,
Event 1 ven 'ai
Occurs -
Event 2 Queue .
Event 2 : - Event 2 Wait
Occurs
¥
¥
¥
Event # Queue
Event m . Event n Wait
Occurs

21

Suspended Processes

e Processor Is faster than 1/0O so all processes
could be waiting for 1/O

e Swap one or more processes to disk to free up
more memory

— Swap out process in Blocked or Ready
e Memory taken away

— Bring in a NEW process

22

Reasons for Process
Suspension

Swapping The operating system needs to release sufficient main
memory to bring in a process that is ready to execute.

Other OS reason The operating system may suspend a background or utility
process or a process that is suspected of causing a problem.

Interactive user request A user mav wish to suspend execution of a program for
purposes of debugging or in connection with the use of a
resource.

Timing A process may be executed periodically (e.g., an

accounting or system monitoring process) and mav be
suspended while waiting for the next time interval

Parent process request A parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or
to coordinate the activity of various descendents.

23

Suspended Processes

* Blocked state becomes suspend state when
swapped to disk

» Can suspend process from either the Block or
Ready state

e TwO new states
— Blocked/Suspend
— Ready/Suspend

24

Modeling Process Suspension

Admit Dispatch Release
New ——® Ready _g Running —® Exit

Timeout

Suspend
Suspend -w————— Blocked

Suspend ONLY Blocked Processes

25

Modeling Process Suspension

A
N
Lemm TN T e
- A Activate ‘ Dispﬂttlr*‘-_ Rel
S“EPEFM - Ready g Running SO e Exit
A Suspend Timeout

Event
Oecurs
Event

Activate

Suspend Ready or
Blocked/ - Blocked

Bipena e Blocked Processes
Suspend

26

Processes and Resources

Computer
Resources

e Processes P1 and P2 are in Memory
e Process P2 is blocked waiting for 1/O resource held by P1

* Process Pn is awaiting memory allocation
Suspended or New Job Arrival

27

Operating System
Control Structures

Contain information about the current status of
each process and resource

» Tables are constructed for each entity the
operating system manages

— Memory Tables, I/O Tables, File Tables, Process
Tables

— DESCRIPTORS

Tables = (linked) Data structures in the OS

Memory Tables

 Allocation of main memory to processes
 Allocation of secondary memory to processes

e Protection attributes for access to shared
memory regions

 Information needed to manage virtual memory

Tables = (linked) Data structures in the OS

29

/O Tables

 |/O device Is available or assigned

o Status of I/O operation

 Location in main memory being used as the
source or destination of the 1/O transfer

Tables = (linked) Data structures in the OS

30

File Tables

o Existence of files

 Location on secondary memory
e Current Status

 Attributes

o Sometimes this information is maintained by
a file management system

Tables = (linked) Data structures in the OS

31

Process Table

* \Where process is located

o Aftributes In the process control block
— Program
— Data
— Stack

Tables = (linked) Data structures in the OS

32

Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area. and
programs that may be modified.

User Program
The program to be executed.

Syvstem Stack
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the operating system to control the process (see Table 3.5).

33

Control Tables, Processes and Process Images

™~

Process
Image

Process

1
T~
>

——————pp-| Memory Tables
Memory
T | /O Tables
Files
Processes —| File Tables
Primary Process Table
- Process 1
Process 2
N Ote Process 3
LINKAGES pervade v
OS Control Structure v
Process n

Process
Image

Process

\

34

Process Control Block:
Categories of Information

e Process Identification
— Process Id.....

 Processor State Information
— Registers, Stack pointers...

e Process Control Information
— State Information, Resource ownership...

35

Process Control Block

e Process identification

— ldentifiers

* Numeric identifiers that may be stored with the
process control block include
— ldentifier of this process

— ldentifier of the process that created this process
(parent process)

— User identifier

36

Process Control Block

e Processor State Information
— User-Visible Registers

— Control and Status Registers
* Program counter, condition codes, status information

— Stack Pointers
« Each process has an associated system/runtime stack

— Program Status Word (PSW)
o Example: the EFLAGS register on Pentium machines

37

Process Control Block

e Process Control Information

— Scheduling and State Information
 Process state (ready, running...)
 Priority
 Scheduling info (time used, waiting...)

— Granted Privileges
» Shared memory, system utility access

— VM Page Map Tables

— Resource Ownership and Utilization

— Data Structuring

 Data structures indicating relationships
— parent/child, threads, shared resources

— IPC Information

38

When to Switch a Process
(Context Switch)

e Clock interrupt

— process has executed for the maximum allowable
time slice

e |/O Interrupt

 Memory fault

— memory address is In virtual memory so it must
be brought into main memory

39

When to Switch a Process
(Context Switch)

e Trap
— error or exception occurred
— may cause process to be moved to Exit state

e Supervisor call
— such as file open

40

Change of Process State:
Performing the Context Switch

Save context of processor including program
counter and other registers

Update the process control block of the
process that is currently in the Running state

Move process control block to appropriate
queue — ready; blocked; ready/suspend

Select another process for execution

41

Change of Process State:
Performing the Context Switch

Update the process control block of the
nrocess selected

Update memory-management data structures
Restore context of the selected process

42

OS Design

OS can be integrated into the execution
framework in 3 distinct ways

» Executing as a Non-Process Kernel
o Execution within User Processes
e Process-Based execution

43

Execution of the Operating System

* Non-process Kernel

— Execute kernel outside of any process

— Operating system code is executed as a separate

entity that operates in privileged mode

¥YY¥

Kernel

User
processes

T The OS

44

Execution of the Operating System

e Execution Within User Processes

— Operating system software within context of a
user process

— Process executes in privileged mode when
executing operating system code

OS is a collection of routines
LINKED to user processes

P 1 PI Pu

0s 0s 08 Minimal CTX timel!

F‘:: E;::E‘E‘Er:::

‘ Process Switching Functions ‘

45

Execution of the Operating
System

* Process-Based Operating System

— Implement operating system as a collection of
system processes

— Useful in multi-processor or multi-computer
environment

OS functions

AN
- I

Py Pl ¥¥Y P, (05 ¥Y¥Y¥ [0S

Process Switching Functions

46

UNIX SVR4 Process
Management

* Most of the operating system executes within
the environment of a user process

P] PI Pu

05 5 LB

F‘:: f-::'E'E‘EF'::

Process Switching Functions ‘

UNIX Process States

Table 3.9 TUNTIX Process States

User Running
Kernel Running
Ready to Run, in Memory

Asleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

LZombie

Executing in user mode.
Executing in kernel mode.
Eeady to run as soon as the kernel schedules it.

Unable to execute until an event occurs; process is in main memory
(a blocked state).

Process is ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process is newly created and not vet ready to run.

Process no longer exists, but it leaves a record for its parent process
to collect.

48

fork

Created
Preempted
return . enough not enough memory
to user Y . MEMmory, (swapping system only)
h"ﬁ.
.
‘\-
User .
Running preempt ™
swap oul
return reschedule Read}rh:-Run‘ # Ready to Run
process In Memory swap in Swapped
system call,
interrupt Kernel F 3 &
Running
‘ake ‘ake
interrupt, deep wakeup wakeup
interrupt return exit
Adl i swap out Sleep,
Zombie mﬂp r pl =P
mory Swapped

Figure 3.17 UNIX Process State Transition Diagram

49

Modes of Execution

e User mode
— Less-privileged mode
— User programs typically execute in this mode
e System mode, control mode, or kernel mode
— More-privileged mode
— Kernel of the operating system

50

Process Creation

AssIgn a unique process identifier
Allocate space for the process
Initialize process control block

Set up appropriate linkages

— Ex: add new process to linked list used for
scheduling queue

Create of expand other data structures
— EX: maintain an accounting file

51

