
1

1

Computer System Overview

Chapter 1

2

Operating System

• Exploits the hardware resources of one
or more processors

• Provides a set of services to system users
• Manages secondary memory and I/O

devices

2

3

Basic Elements
• Processor
• Main Memory

– volatile
– referred to as real memory or primary memory

• I/O modules
– secondary memory devices
– communications equipment
– terminals

• System bus
– communication among processors, memory, and

I/O modules

4

Processor

• Two internal registers
– Memory address register (MAR)

• Specifies the address for the next read or write

– Memory buffer register (MBR)
• Contains data written into memory or receives

data read from memory

• Two I/O registers (peripherials)
– I/O address register
– I/O buffer register

3

5

Top-Level Components

6

General & Special Purpose
Processor Registers

• User-visible registers
– Enable programmer to minimize main-

memory references by optimizing register use
• Control and status registers

– Used by processor to control operating of the
processor

– Used by privileged operating-system routines
to control the execution of programs

4

7

User-Visible Registers

• May be referenced by machine language
• Available to all programs - application

programs and system programs
• Types of registers

– Data
– Address

• Index
• Segment pointer
• Stack pointer

8

User-Visible Registers

• Address Registers
– Index

• Involves adding an index to a base value to get
an address

– Segment pointer
• When memory is divided into segments,

memory is referenced by a segment and an
offset

– Stack pointer
• Points to top of stack

5

9

Control and Status Registers
• Program Counter (PC)

– Contains the address of an instruction to be fetched

• Instruction Register (IR)
– Contains the instruction most recently fetched

• Program Status Word (PSW)
– Condition codes
– Interrupt enable/disable
– Supervisor/user mode

10

Control and Status Registers

• Condition Codes or Flags
– Bits set by the processor hardware as a

result of operations
– Examples

• Positive result
• Negative result
• Zero
• Overflow

6

11

Instruction Execution

• Two steps
– Processor reads instructions from memory

• Fetches

– Processor executes each instruction

12

Instruction Cycle

7

13

Instruction Fetch and Execute

• Program counter (PC) holds address of
the instruction to be fetched next

• The processor fetches the instruction
from memory

• Program counter is incremented after
each fetch

14

Instruction Register
• Fetched instruction is placed in the instruction

register
• Instruction types (categories)

– Processor-memory
• Transfer data between processor and memory

– Processor-I/O
• Data transferred to or from a peripheral device

– Data processing
• Arithmetic or logic operation on data

– Control
• Alter sequence of execution

8

15

Characteristics of a
Hypothetical Machine

16

Example of Program Execution
1940:

Acc <- Mem [940]

5941:
Acc <- Acc + Mem [941]

2941:
Mem [941] <- Acc

9

17

Direct Memory Access
(DMA)

• I/O exchanges occur directly with
memory

• Processor grants I/O module authority to
read from or write to memory

• Relieves the processor responsibility for
the exchange

18

Interrupts

• Interrupt the normal sequencing of the
processor

• Most I/O devices are slower than the
processor
– Processor must pause to wait for device

10

19

Classes of Interrupts

20

Program Flow of Control
Without Interrupts

Program waits “busy waits” for
Data to transfer (between 4 & 5)

1 – 4 –*– 5 – 2 – 4 –*– 5 – 3

11

21

Program Flow of Control With
Interrupts, Short I/O Wait

Program execution and data
transfer overlap at 2a and 3a

1 – 4 – 2a – 5 – 2b – 4 – 3a – 5 – 3b

22

Program Flow of Control With
Interrupts; Long I/O Wait

Program execution blocks at 2nd

Write because I/O controller is busy

1 – 4 – 2 – 5 – 4 – 3 – 5

Program execution overlaps with
data transfer at 2 and 3

12

23

Interrupt Handler

• Program to service a particular I/O
device

• Generally part of the operating system

24

Interrupts

• Suspends the normal sequence of
execution

13

25

Interrupt Cycle

26

Interrupt Cycle

• Processor checks for interrupts
• If no interrupts fetch the next instruction

for the current program
• If an interrupt is pending, suspend

execution of the current program, and
execute the interrupt-handler routine

14

27

Timing Diagram Based on
Short I/O Wait

Concurrency:
Data transfer and
Program execution

Program
“busy wait”

28

Timing Diagram Based on
Long I/O Wait Assumption:

Cannot issue a 2nd “write”
until 1st “write” finishes

Data transfer time

Pgm segment 2 completes
before Data transfer completes

Data transfer time

Pgm segment 3 completes
before Data transfer completes

15

29

Simple Interrupt Processing

30

Changes in Memory and
Registers for an Interrupt

Program execution environment
(PC, Gen Regs, Stack Ptr)
is saved on control stack

Processor set up to execute
Interrupt Service Routine
PC <- Y, SP <- TDM…
(and other things)

16

31

Changes in Memory and
Registers for an Interrupt

After Interrupt Handler finishes
Restart user program execution:

PC <- N+1
General Regs restored
SP <- T

32

Handling Multiple Interrupts:
Approach 1

• Disable interrupts while an interrupt is
being processed

UP1 ->
X ->
Y ->

UP2

17

33

Handling Multiple Interrupts
Approach 2

• Define priorities for interrupts
Up1

X1
Y

X2
Up2

34

Multiple Interrupts
Which Approach?

What is the
Execution Sequence?

UP

PR

COM

DSK

18

35

Multiprogramming

• Processor has more than one program to
execute

• The sequence the programs are executed
depend on their relative priority and
whether they are waiting for I/O

• After an interrupt handler completes,
control may not return to the program that
was executing at the time of the interrupt

36

Memory Hierarchy

• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access speed

19

37

Memory
Hierarchy

On CPU

On Memory Unit

38

Going Down the Hierarchy

• Decreasing cost per bit
• Increasing capacity
• Increasing access time
• Decreasing frequency of access of the

memory by the processor
– Locality of reference

20

39

Secondary Memory

• Nonvolatile
• Auxiliary memory
• Used to store program and data files

40

Disk Cache
• A portion of main memory used as a buffer to

temporarily to hold data for the disk
• Disk read/writes exhibit address clustering

– Successive/multiple accesses to same data
structure or set of instructions (locality)

• Some data written out may be referenced
again. The data are retrieved rapidly from the
software cache instead of slowly from disk

21

41

Memory Cache

• Invisible to operating system
• Increase the speed of memory
• Processor speed is faster than memory speed
• Exploit the principle of locality

42

Cache Memory

Blocks
Slots

Memory Unit

22

43

Cache Memory

• Contains a copy of a portion of main
memory

• Processor first checks cache
• If not found in cache, the block of

memory containing the needed
information is moved to the cache and
delivered to the processor

Cache/Main Memory System

23

45

Cache Read
Operation

46

Cache Design

• Cache size
– Small caches have a significant impact on

performance
• Block size

– The unit of data exchanged between cache and main
memory

– Larger block size more hits until
probability of using newly fetched data becomes
less than the probability of reusing data that have to
be moved out of cache

24

47

Cache Design

• Mapping function
– Determines which cache location the block will

occupy
• Replacement algorithm

– Determines which block to replace
– Least-Recently-Used (LRU) algorithm

48

Cache Design
• Write policy needed

– When a memory write operation takes place
=> Inconsistency between cache and main

memory
– Need to synchronize cache contents with

memory

– Can occur every time block is updated
– Can occur only when block is replaced

• Minimizes memory write operations
• BUT, leaves main memory in an obsolete state

25

49

Approached to Handling I/O
(Data Transfer)

• Programmed I/O
– I/O Module performs minimal actions, relies on

processor to recognize when I/O complete
• Interrupt driven I/O

– I/O Module sets interrupt buit
– Overlapping of Pgm execution and data transfer

• Direct Memory Access (DMA)
– I/O Module talks directly to Memory Unit

50

Programmed I/O
• I/O module performs the action,

not the processor
• Sets appropriate bits in the I/O

status register
• No interrupts occur
• Processor continually checks

status until operation is
complete

26

51

Interrupt-Driven I/O
• Processor is interrupted when I/O

module ready to exchange data
• Processor saves context of program

executing and begins executing
interrupt-handler

• No needless waiting

• Consumes a lot of processor time
because every word read or written
passes through the processor

52

Direct Memory Access

• Transfers a block of data
directly to or from memory

• An interrupt is sent when
the transfer is complete

• Processor continues with
other work

