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Computer System Overview

Chapter 1
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Operating System

• Exploits the hardware resources of one 
or more processors

• Provides a set of services to system users
• Manages secondary memory and I/O 

devices
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Basic Elements
• Processor
• Main Memory

– volatile
– referred to as real memory or primary memory

• I/O modules
– secondary memory devices
– communications equipment
– terminals

• System bus
– communication among processors, memory, and 

I/O modules
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Processor

• Two internal registers
– Memory address register (MAR)

• Specifies the address for the next read or write

– Memory buffer register (MBR)
• Contains data written into memory or receives 

data read from memory

• Two I/O registers (peripherials)
– I/O address register
– I/O buffer register
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Top-Level Components
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General & Special Purpose 
Processor Registers

• User-visible registers
– Enable programmer to minimize main-

memory references by optimizing register use
• Control and status registers

– Used by processor to control operating of the 
processor

– Used by privileged operating-system routines 
to control the execution of programs
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User-Visible Registers

• May be referenced by machine language
• Available to all programs - application 

programs and system programs
• Types of registers

– Data 
– Address

• Index
• Segment pointer
• Stack pointer
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User-Visible Registers

• Address Registers
– Index

• Involves adding an index to a base value to get 
an address

– Segment pointer
• When memory is divided into segments, 

memory is referenced by a segment and an 
offset

– Stack pointer
• Points to top of stack
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Control and Status Registers
• Program Counter (PC)

– Contains the address of an instruction to be fetched

• Instruction Register (IR)
– Contains the instruction most recently fetched

• Program Status Word (PSW)
– Condition codes
– Interrupt enable/disable
– Supervisor/user mode
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Control and Status Registers

• Condition Codes or Flags
– Bits set by the processor hardware as a 

result of operations
– Examples

• Positive result
• Negative result
• Zero
• Overflow
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Instruction Execution

• Two steps
– Processor reads instructions from memory

• Fetches

– Processor executes each instruction
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Instruction Cycle
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Instruction Fetch and Execute

• Program counter (PC) holds address of 
the instruction to be fetched next

• The processor fetches the instruction 
from memory

• Program counter is incremented after 
each fetch
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Instruction Register
• Fetched instruction is placed in the instruction 

register
• Instruction types (categories)

– Processor-memory
• Transfer data between processor and memory

– Processor-I/O
• Data transferred to or from a peripheral device

– Data processing
• Arithmetic or logic operation on data

– Control
• Alter sequence of execution
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Characteristics of a 
Hypothetical Machine
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Example of Program Execution
1940: 

Acc  <- Mem [940]

5941: 
Acc  <- Acc + Mem [941]

2941: 
Mem [941]  <- Acc
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Direct Memory Access 
(DMA)

• I/O exchanges occur directly with 
memory

• Processor grants I/O module authority to 
read from or write to memory

• Relieves the processor responsibility for 
the exchange

18

Interrupts

• Interrupt the normal sequencing of the 
processor

• Most I/O devices are slower than the 
processor
– Processor must pause to wait for device
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Classes of Interrupts

20

Program Flow of Control 
Without Interrupts

Program waits “busy waits” for 
Data to transfer (between 4 & 5)

1 – 4 –*– 5 – 2 – 4 –*– 5 – 3
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Program Flow of Control With 
Interrupts, Short I/O Wait

Program execution and data 
transfer overlap at 2a and 3a

1 – 4 – 2a – 5 – 2b – 4 – 3a – 5 – 3b

22

Program Flow of Control With 
Interrupts; Long I/O Wait

Program execution blocks at 2nd

Write because I/O controller is busy

1 – 4 – 2 – 5 – 4 – 3 – 5

Program execution overlaps with 
data transfer at 2 and 3
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Interrupt Handler

• Program to service a particular I/O 
device

• Generally part of the operating system
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Interrupts

• Suspends the normal sequence of 
execution
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Interrupt Cycle
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Interrupt Cycle

• Processor checks for interrupts
• If no interrupts fetch the next instruction 

for the current program
• If an interrupt is pending, suspend 

execution of the current program, and 
execute the interrupt-handler routine
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Timing Diagram Based on 
Short I/O Wait

Concurrency:
Data transfer and
Program execution

Program 
“busy wait”
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Timing Diagram Based on 
Long I/O Wait Assumption: 

Cannot issue a 2nd “write” 
until 1st “write” finishes

Data transfer time

Pgm segment 2 completes 
before Data transfer completes

Data transfer time

Pgm segment 3 completes 
before Data transfer completes
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Simple Interrupt Processing
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Changes in Memory and 
Registers for an Interrupt

Program execution environment
(PC, Gen Regs, Stack Ptr) 
is saved on control stack

Processor set up to execute
Interrupt Service Routine
PC <- Y, SP <- TDM…
(and other things)
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Changes in Memory and 
Registers for an Interrupt

After Interrupt Handler finishes
Restart user program execution:

PC <- N+1
General Regs restored
SP <- T
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Handling Multiple Interrupts: 
Approach 1

• Disable interrupts while an interrupt is 
being processed

UP1 ->
X  ->
Y  ->

UP2
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Handling Multiple Interrupts
Approach 2

• Define priorities for interrupts
Up1

X1
Y

X2
Up2

34

Multiple Interrupts
Which Approach?

What is the 
Execution Sequence?

UP

PR

COM

DSK



18

35

Multiprogramming

• Processor has more than one program to 
execute

• The sequence the programs are executed 
depend on their relative priority and 
whether they are waiting for I/O

• After an interrupt handler completes, 
control may not return to the program that 
was executing at the time of the interrupt
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Memory Hierarchy

• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access speed
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Memory 
Hierarchy

On CPU

On Memory Unit
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Going Down the Hierarchy

• Decreasing cost per bit
• Increasing capacity
• Increasing access time
• Decreasing frequency of access of the 

memory by the processor
– Locality of reference
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Secondary Memory

• Nonvolatile
• Auxiliary memory
• Used to store program and data files

40

Disk Cache
• A portion of main memory used as a buffer to 

temporarily to hold data for the disk
• Disk read/writes exhibit address clustering

– Successive/multiple accesses to same data 
structure or set of instructions (locality)

• Some data written out may be referenced 
again.  The data are retrieved rapidly from the 
software cache instead of slowly from disk
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Memory Cache

• Invisible to operating system
• Increase the speed of memory
• Processor speed is faster than memory speed
• Exploit the principle of locality
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Cache Memory

Blocks
Slots

Memory Unit
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Cache Memory

• Contains a copy of a portion of main 
memory

• Processor first checks cache
• If not found in cache, the block of 

memory containing the needed 
information is moved to the cache and 
delivered to the processor

Cache/Main Memory System
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Cache Read 
Operation
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Cache Design

• Cache size
– Small caches have a significant impact on 

performance
• Block size

– The unit of data exchanged between cache and main 
memory

– Larger block size more hits until 
probability of using newly fetched data becomes 
less than the probability of reusing data that have to 
be moved out of cache
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Cache Design

• Mapping function
– Determines which cache location the block will 

occupy
• Replacement algorithm

– Determines which block to replace
– Least-Recently-Used (LRU) algorithm
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Cache Design
• Write policy needed

– When a memory write operation takes place
=>  Inconsistency between cache and main 

memory
– Need to synchronize cache contents with 

memory

– Can occur every time block is updated
– Can occur only when block is replaced

• Minimizes memory write operations
• BUT, leaves main memory in an obsolete state
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Approached to Handling I/O
(Data Transfer)

• Programmed I/O
– I/O Module performs minimal actions, relies on 

processor to recognize when I/O complete
• Interrupt driven I/O

– I/O Module sets interrupt buit
– Overlapping of Pgm execution and data transfer

• Direct Memory Access (DMA)
– I/O Module talks directly to Memory Unit

50

Programmed I/O
• I/O module performs the action, 

not the processor
• Sets appropriate bits in the I/O 

status register
• No interrupts occur
• Processor continually checks 

status until operation is 
complete
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Interrupt-Driven I/O
• Processor is interrupted when I/O 

module ready to exchange data
• Processor saves context of program 

executing and begins executing 
interrupt-handler

• No needless waiting

• Consumes a lot of processor time 
because every word read or written 
passes through the processor
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Direct Memory Access

• Transfers a block of data 
directly to or from memory

• An interrupt is sent when 
the transfer is complete

• Processor continues with 
other work


