Computer System Overview

Chapter 1

Operating System

Exploits the hardware resources of one
Or more processors

Provides a set of services to system users

Manages secondary memory and 1/O
devices

Basic Elements

Processor
Main Memory
volatile
referred to as real memory or primary memory
1/0O modules
secondary memory devices
communications equipment
terminals
System bus

communication among processors, memory, and
1/0 modules

Processor

Two Internal registers

Memory address register (MAR)
Specifies the address for the next read or write

Memory buffer register (MBR)

Contains data written into memory or receives
data read from memory

Two /O registers (peripherials)
|/O address register
|/O buffer register

Top-Level Components

CPU
PC MAR
IR MBR
I/O AR

/O Module

¥

¥

¥
BulTers

Figure 1.1 Computer Components:

System
Bus

Main Memory

¥
¥
¥

Instruction
Instruction
Instruction

¥

¥

¥
Data
Data
Data
Data

L]

L

nb2
nb1

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Inputfoutput buffer register

Top-Level View

General & Special Purpose
Processor Registers

User-visible registers

Enable programmer to minimize main-
memory references by optimizing register use

Control and status registers

Used by processor to control operating of the
processor

Used by privileged operating-system routines
to control the execution of programs

User-Visible Registers

May be referenced by machine language

Avalilable to all programs - application
programs and system programs

Types of registers
Data

Address
Index
Segment pointer
Stack pointer

User-Visible Registers

Address Registers

Index

Involves adding an index to a base value to get
an address

Segment pointer

When memory is divided into segments,
memory is referenced by a segment and an
offset

Stack pointer
Points to top of stack

Control and Status Registers

Program Counter (PC)
Contains the address of an instruction to be fetched

Instruction Register (IR)
Contains the instruction most recently fetched

Program Status Word (PSW)
Condition codes
Interrupt enable/disable
Supervisor/user mode

Control and Status Registers

Condition Codes or Flags

Bits set by the processor hardware as a
result of operations

Examples
Positive result
Negative result
Zero
Overflow

10

Instruction Execution

Two steps

Processor reads instructions from memory
Fetches

Processor executes each instruction

11

Instruction Cycle

Fetch Stage Execute Stage

Fetch Next Execute
k P
START Instruction Instruction

Figure 1.2 Basic Instruction Cycle

12

Instruction Fetch and Execute

Program counter (PC) holds address of
the Instruction to be fetched next

The processor fetches the instruction
from memory

Program counter Is incremented after
each fetch

13

Instruction Register

Fetched instruction is placed in the instruction
register

Instruction types (categories)

Processor-memory
Transfer data between processor and memory

Processor-1/0
Data transferred to or from a peripheral device

Data processing
Arithmetic or logic operation on data

Control
Alter sequence of execution

14

Characteristics of a
Hypothetical Machine

15
| Opcode | Address |

(a) Instruction format

| S | Magnitude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(¢) Internal CPU registers
0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

15

Example of Program Execution

Memory CPLU Registers Memory CPLU Regjisters
0011 9 40 30 0|PC M1 9 40 3nllpC
1940: 3U159411 AC| 3015 9 4 1 0D 003[AC
' 302[2 9 4 1 194 0|IR [302[2 9 4 1 L9 40]IR
Acc <- Mem [940] T T
240/0 00 3 24000 0 3
941|0 0 0 2 94110 0 0 2
Step 1 Step 2
Memory CPU Registers Memory CPLU Regjsters
. 001 940 301[PC 30011 940 3 02|PC
0941: 3015 94 1 000 3[AC|300|5 9 41 000 S5[AC
ACC <- Acc+ Mem [941] 3|2 9:1- 1_-1-.5 9 4 1|IR | 3022 qu- <5 941
1 |
0o o0 3 240/0 0 0 3 3_-/!-'2:5
941|0 0 0 2 94110 0 0 2
Step 3 Step 4
Memory CPLU Registers Memory CPLU Regjisters
0011 9 40 30 2|PC M1 9 40 3n3pC
301{5 9 4 1 000S(AC)301|5 941 0D00S[AC
2941: 302[2 9 4 1|—»209 4 I|IR|302[2 9 41 294 1|R
] L]
Mem [941] <- A 1 -
€ [9] cc 240/0 00 3 240000 3
941|0 0 0 2 94110 0 O 5
Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Direct Memory Access
(DMA)

|/O exchanges occur directly with
memory

Processor grants 1/0O module authority to
read from or write to memory

Relieves the processor responsibility for
the exchange

17

Interrupts

Interrupt the normal sequencing of the
processor
Most 1/O devices are slower than the

Processor
Processor must pause to wait for device

18

Classes of Interrupts

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
MEemory space.

Timer Generated by a timer within the processor. This allows the operating system
to perform certain functions on a regular basis.

'O Generated by an I/O controller, to signal normal completion of an operation
or to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

19

Program Flow of Control

Without Interrupts

©

1 __-""-":'- _'_-:: E _['ﬂ:'_ - [14 : 7
werre & F 1 iCommand Program waits “busy waits” for

—— ,_ f) Data to transfer (between 4 & 5)

L]
"'h-,.
HH-I.:H-'#
u
L}

" END

1-4-*—5-2_4—*_5_3

5
15 |

MNoint t
(a) Mo interrupts 20

Program Flow of Control With
Interrupts, Short I/O Wait

FLEEEDJ . . F'mEu.u:L

1w
WRITE

L
-_!'"
@ e @
o E
"*l' .;: -: a®
. e 'O
N 1
[TE oo il Cormmand
" I- :
— P
il i
L *
id
- [
]

(b)) Interrupts; short LA wait

1-4-2a-5-2b-4-3a-5-3b

Program execution and data
transfer overlap at 2a and 3a

21

Program Flow of Control With

Interrupts; Long 1/0O Wait

User
Program p . Program
@ A7 @
o et WO Program execution blocks at 2nd
—— | i Write because 1/0O controller is busy
@ i
'."* ! Interrupt
Fi 0 gy 1 1-4-2-5-4-3-5
S— i B I (C
— i o 1% S
i 77 END
i Program execution overlaps with
@ i data transfer at 2 and 3
WRITE ¥

(c) Interrupts; long L0 wait 29

Interrupt Handler

Program to service a particular 1/0
device

Generally part of the operating system

23

Interrupts

 Suspends the normal sequence of
execution

User Program Interrupt Handler
1
2
¥ ¥
¥ ¥
¥ ¥
i
Interrupt 4 |
occurs here i+ 1
¥
¥
¥
M

Figure 1.6 Transfer of Control via Interrupts 24

Interrupt Cycle

Fetch Stage Execute Stage Interrupt Stage
* Interrupts
Disabled
Check for
Fetch next Execute interrupt;
instruction instruction Interrupts initiate interrupt
handler

Enabled

(HALT '

Figure 1.7 Instruction Cycle with Interrupts

25

Interrupt Cycle

Processor checks for interrupts

If no Interrupts fetch the next instruction
for the current program

If an interrupt Is pending, suspend
execution of the current program, and
execute the interrupt-handler routine

26

Timing Diagram Based on

Time

Program
“busy wait”

ole

<7
E o
g

° oo

ég
=2
g

oo

I

(a} Without interrupts

(circled numbers refer

Lo
operation

o
operation

to numbers in Figure 1.5a}

Short 1/0 Wait

Concurrency:
Data transfer and
Program execution

I operation

®/e|0/0® 060

(b) With intermpts
{circled numbers refer
to numbers in Figure 1 .5b}

Figure 1.8 Program Timing: Short I/0 'Wait 21

Timing Diagram Based on
Long I/O Walt

Assumption:
Time F F Cannot issue a 2nd “write”
| F F until 18t “write” finishes

—_— —_— N
Processor ro -

wait lupmﬁun ©) . Data transfer time

operation

® Processor Pgm segment 2 completes
— 5 J before Data transfer completes
@ S
et ©) Data transfer time

(18]
E550T operation >
Proces: ng I |- Pgm segment 3 completes
wait before Data transfer completes
@ J
@ (b) With interrupts
{circled numbers refer
to numbers in Figure 1.5c)
(a) Without interrupts
(circled numbers refer
to numbers in Figure 1.5a) 28

Figure 1.9 Program Timing: Long I/O Wait

Simple Interrupt Processing

Hardware

—— A

Device controller or
other system hardware
issues an interrupt

Processor finishes

execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Software

—A

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Figure 1.10 Simple Interrupt Processing

29

Changes in Memory and
Registers for an Interrupt

M
Comntrol ¥
Stack - |
T
Nl
Progmm
Covmter
¥ slart
Interrupt General
Service Registers
Y+ L [Return Routine I——T—I
Stack
Pointer
Processor
B M
N il
N+ 1 User's
Program
Main
Memory

(a) Interrupt occurs after instruction
at location v

Program execution environment
(PC, Gen Regs, Stack Ptr)
IS saved on control stack

Processor set up to execute
Interrupt Service Routine
PC<-Y,SP<-TDM...
(and other things)

30

Changes in Memory and
Registers for an Interrupt

greea After Interrupt Handler finishes
o Restart user program execution:

¥ | Start l.uter.rupt SE:EI PC <' N+1

¥+ L. [Regz] Rotie General Regs restored
o SP<-T
Processor ‘
Main
Memory 31

(b} Return from interrupt

Handling Multiple Interrupts:
Approach 1

Disable interrupts while an interrupt is
being processed

Interrupt UPl ->
User F_'rogrmn I lﬂm_l ler X X ->
é / g Y ->
%X g U P2
é - \] “lfl'l'lll}[
- Handler Y
= =

{a) Sequential interrupt processing

Handling Multiple Interrupts
Approach 2

Define priorities for interrupts
Interrupt Upl

User Program Handler X
- X
.-"""r'_

/ %\Y X, Y

xhﬁ; Up,
Interrupt
landler Y

{b) Nested interrupt processing 33

IIIIIIIIIIIIIIJ

Multiple Interrupts

Printer Communication

User Program

— interrupt s.e-rvlce routing interrupt service routing Wh | Ch Approach?
- - P
- S - 2 - What is the
- : - - |[COM :
- < . = Execution Sequence?
- T~ =
= , - Disk
- N — wupt service routine
E e ——
- PR -
- -
DSK

C
5

Figure 1.13 Example Time Sequence of Multiple Interrupts 34

Multiprogramming

Processor has more than one program to
execute

he sequence the programs are executed
depend on their relative priority and
whether they are waiting for 1/0O

After an interrupt handler completes,
control may not return to the program that
was executing at the time of the interrupt

35

Memory Hierarchy

Faster access time, greater cost per bit
Greater capacity, smaller cost per bit

Greater capacity, slower access speed

36

Memory
On Memory Unit H |erarChy

37

Figure 1.14 The Memory Hierarchy

Going Down the Hierarchy

Decreasing cost per bit
Increasing capacity
Increasing access time

Decreasing frequency of access of the
memory by the processor

Locality of reference

38

Secondary Memory

Nonvolatile
Auxiliary memory
Used to store program and data files

39

Disk Cache

A portion of main memory used as a buffer to
temporarily to hold data for the disk
Disk read/writes exhibit address clustering

Successive/multiple accesses to same data
structure or set of instructions (locality)

Some data written out may be referenced
again. The data are retrieved rapidly from the
software cache instead of slowly from disk

40

Memory Cache

Invisible to operating system

Increase the speed of memory

Processor speed Is faster than memory speed
Exploit the principle of locality

41

Cache Memory

——

Block Transfer

Word 'i'ransfer M_/_\

[CPU ‘ | i Cache Main Memory

Slots

Blocks
Memory Unit

__

Figure 1.16 Cache and Main Memory

Cache Memory

Contains a copy of a portion of main
memory

Processor first checks cache

If not found in cache, the block of
memory containing the needed
Information Is moved to the cache and
delivered to the processor

43

Cache/Main Memory System

Line Memory
Number Tag Block address
{.‘r 1‘.}
1 1
2 2 Block
3 K words
y (}
¥
x | e
Chl
Block Length
K Words) ¥
(a) Cache ¥
¥
Block
Pl
Word
Length

(b) Main memory

Figure 1.17 Cache/Main-Memory Structure

Cache Read

RA -read address

[I Operation

Access main
» memory for block
containing RA

Fetch RA word Allocate cache
and deliver glot for main
to CPLI memory block

l l

L“m“d mmtl::ﬂ " Deliver RA word
mary to CPU

into cache slot

45

Figure 1.18 Cache Read Operation

Cache Design

Cache size
Small caches have a significant impact on
performance

Block size

The unit of data exchanged between cache and main
memory

Larger block size more hits until

probability of using newly fetched data becomes
less than the probability of reusing data that have to
be moved out of cache

46

Cache Design

Mapping function

Determines which cache location the block will
occupy

Replacement algorithm
Determines which block to replace
Least-Recently-Used (LRU) algorithm

47

Cache Design

Write policy needed
When a memory write operation takes place

=> |nconsistency between cache and main
memory

Need to synchronize cache contents with
memory

Can occur every time block is updated

Can occur only when block Is replaced
Minimizes memory write operations
BUT, leaves main memory in an obsolete state

48

Approached to Handling I/O
(Data Transfer)

Programmed |/O

1/0O Module performs minimal actions, relies on
processor to recognize when /0O complete

Interrupt driven 1/O
|/O Module sets interrupt buit
Overlapping of Pgm execution and data transfer

Direct Memory Access (DMA)
1/0O Module talks directly to Memory Unit

49

Programmed 1/O

I/0O module performs the action,
not the processor

Sets appropriate bits in the 1/0
status register

No Interrupts occur

Processor continually checks
status until operation is
complete

Issue Read
—» command to [|CPU — I/O
I/O module

Ermror

Write word

into me CPU — memory

Yes

Next instruction
{a) Programmed /O

Issue Read PU — 1/O
- —» command to Do something
Interrupt-Driven 1/O [ichume f-->ux
E:;?}Stﬂm = = = [ntermupt
Processor Is interrupted when 1/O il 1O — CPU
module ready to exchange data
Processor saves context of program Error
. . . condition
executing and begins executing
Interrupt-handler T
... from /O
No needless waiting Modute
Consumes a lot of processor time CPU — memory
because every word read or written
passes through the processor

Next instruction
{(b) Interrupt-driven I/O

Direct Memory Access

 Transfers a block of data
directly to or from memory

* An Interrupt is sent when
the transfer i1s complete

* Processor continues with
other work

Next instruction

(c) Direct memory access

52

	Computer System Overview
	Operating System
	Basic Elements
	Processor
	Top-Level Components
	General & Special Purpose Processor Registers
	User-Visible Registers
	User-Visible Registers
	Control and Status Registers
	Control and Status Registers
	Instruction Execution
	Instruction Cycle
	Instruction Fetch and Execute
	Instruction Register
	Characteristics of a Hypothetical Machine
	Example of Program Execution
	Direct Memory Access (DMA)
	Interrupts
	Classes of Interrupts
	Program Flow of Control Without Interrupts
	Program Flow of Control With Interrupts, Short I/O Wait
	Program Flow of Control With Interrupts; Long I/O Wait
	Interrupt Handler
	Interrupts
	Interrupt Cycle
	Interrupt Cycle
	Timing Diagram Based on �		Short I/O Wait
	Timing Diagram Based on �Long I/O Wait
	Simple Interrupt Processing
	Changes in Memory and Registers for an Interrupt
	Changes in Memory and Registers for an Interrupt
	Handling Multiple Interrupts: Approach 1
	Handling Multiple Interrupts�Approach 2
	Multiple Interrupts
	Multiprogramming
	Memory Hierarchy
	Memory �Hierarchy
	Going Down the Hierarchy
	Secondary Memory
	Disk Cache
	Memory Cache
	Cache Memory
	Cache Memory
	Cache/Main Memory System
	Cache Read �Operation
	Cache Design
	Cache Design
	Cache Design
	Approached to Handling I/O�(Data Transfer)
	Programmed I/O
	Interrupt-Driven I/O
	Direct Memory Access

