Chapter 9

!'_ High-level Synchronization

Introduction to Concurrency

= Concurrency

= Execute two or more pieces of code "at the same time*

= No choice:

Geographically distributed data

Interoperability of different machines

A piece of code must "serve" many other client processes
» To achieve reliability

= By choice:
= To achieve speedup
= Sometimes makes programming easier (e.g., UNIX pipes)

CS 3204

Possibilities for Concurrency

Architecture:

Program Style:

Uniprocessor with:

- I/O channel

- 1/O processor

- DMA

Multiprogramming,

multiple process system

programs

Multiprocessor

Parallel programming

Network of processors

Distributed Programs

CS 3204

Examples of Concurrency
iIn Uniprocessors

Example 1: Unix pipes

Motivations:
- fast to write code
- fast to execute

Example 2: Buffering

Motivation:

- required when two asynchronous processes must
communicate

Example 3: Client/Server model

Motivation:

- geographically distributed computing

CS 3204

Concurrency Conditions

Let Sidenote a statement.

Read set of Si:
R (Si) = {al, a2, ...,an}

Set of all variables referenced in Si

Write set of Si:
W (Si) = {b1, b2, ..., bm},

Set of all variables changed by Si

CS 3204

Concurrency Conditions...

cin >> A
R(cin>>A) = {}
Wi(cin>>A) = {A}

CS 3204

Bernstein's Conditions

The following conditions must hold for two statements S1 and S2 to
execute concurrently with valid results:

1) R(S1) INTERSECT W (S2) = {}
2) W (S1) INTERSECT R(S2) = {}
3) W (S1) INTERSECT W (S2) = {}

These are called the Bernstein Conditions.

CS 3204

Structured Parallel Constructs

PARBEGIN / PARENDI

PARBEGIN Sequential execution splits off into several concurrent
sequences
PAREND Parallel computations merge S ARBEGIN
Q = C mod 25;

PARBEGIN Begin

Statement 1; N=N-1:

Statement 2; T =N/S5;

E End;

Statement N; Proc1 (X, Y):

PAREND:; PAREND;

CS 3204

Parbegin / Parend Examples

Begin
S1;
Begin PARBEGIN
PARBEGIN S3;
A=X+Y; BEGIN
S2;
B =2+ 1; S4;
PAREND: PARBEGIN
_ S5;
C=A-B; S6:
W=°C+1; PAREND;
End; End;
PAREND;
S7;
End;

CS 3204

Monitors

m P & V are primitive operations

s Semaphore solutions are difficult to accurately express for
complex synchronization problems

= Need a High-Level solution: Monitors
= A Monitor is a collection of procedures and shared data

= Mutual Exclusion is enforced at the monitor boundary by the
monitor itself

= Data may be global to all procedures in the monitor or local to a
particular procedure

m No access of data is allowed from outside the monitor

CS 3204

Condition Variables

s Within the monitor, Condition Variables are declared
= A queue is associated with each condition variable

= Only two operations are allowed on a condition variable:

The procedure performing the wait is put on the

X.wait queue associated with x

If queue is non-empty: resume some process at

X.signal
g the point it was made to wait

* Note: V operations on a semaphore are "remembered," but if
there are no waiting processes, the signal has no effect

» OS scheduler decides which of several waiting monitor calls to
unlock upon signal

CS 3204

Monitor...

= Queue to enter monitor via calls to procedures
= Queues within the monitors via condition variables

= ADTs and condition variables only accessible via monitor
procedure calls

ADT's condition |
variables |

Procl
queues queue

Proc2

Proc3

CS 3204

Monitors...

Monitors contain procedures that control access to a < CS >, but

not the < CS > code itself.

Program
Monitor <name>
condition i; _
Request Begin
Request;
<CS>
Release
Release;
End;
end monitor

CS 3204

N-Process Critical Section:

Monitor Solution

Monitor NCS {
OK: condition
Busy: boolean <-— FALSE

Request ()
if (Busy) OK.wait;
Busy = TRUE;

}

Release () {
FALSE;

OK.signal;

Busy

Procedure P {
NCS.Request () ;
<CS>;
NCS.Release () ;

}

main () {

parbegin P;P;P;P; parend }

CS 3204

Shared Variable Monitor

monitor sharedBalance {
int balance;
public:
Procedure credit (int amount)
{ balance = balance + amount; }
Procedure debit (int amount)

{ balance = balance - amount; }

CS 3204

Reader & Writer Schema

reader () {

while (true) {

startRead () ;
<read the resource>

finishRead() ;

fork (reader,

fork (reader,

fork (writer,

CS 3204

writer () {

while (true) {

startWrite () ;
<write resource>

finishWrite () ;

Reader & Writers Problem:
The solution

monitor reader writer_ 2{
int numberOfReaders = 0;
boolean busy = false;
condition okToRead, okToWrite;
public:
startRead () {
if (busy || okToWrite.queue) okToRead.wait;
numberOfReaders = numberOfReaders+1;
okToRead.signal;
}
finishRead () {
numberOfReaders = numberOfReaders-1;
if (numberOfReaders =0) okToWrite.signal;
}
startWrite () {
if (busy || numberOfReaders != 0) okToWrite.wait;
busy = true;
}
finishWrite () {
busy = false;
if (okToWrite.queue) okToWrite.signal;
else okToRead.signal;

}

CS 3204

Dining Philosophers’ Problem

while (TRUE) {
think () ;
eat () ;

CS 3204

Dining Philosophers’ Problem:
The solution

enum status {eating, hungry, thinking};

monitor diningPhilosophers{
status state[N]; condition self[N]; int j;

// This procedure can only be called from within the monitor
test (int i) {

if((state[i-1 MOD N] != eating) && (state[i] == hungry)
&& (state[i+1 MOD N] != eating)) {
state[i] = eating;

self[i] .signal;

}

public:
pickUpForks () {
state[i] = hungry;
test (1) ;
if (state[i] != eating) self[i].wait;

}
putDownForks () {

state[i] = thinking;
test (1i—-1 MOD N); test(i+l1] MOD N);

}

diningPhilosophers () { // Monitor initialization code
for (int i1i=0; i<N; i++) state[i] = thinking;

}

CS 3204

Example: Synchronizing Traffic

|

= One-way tunnel

= Can only use tunnel
if Nno oncoming
traffic

= OK to use tunnel if
traffic is already
flowing the right
way

ooy
I

Q00O

¢

CS 3204

Example: Synchronizing Traffic

monitor tunnel {
int northbound = 0, southbound = 0;
trafficSignal nbSignal = RED, sbSignal = GREEN;
condition busy;
public:
nbArrival () {
if (southbound > 0) busy.wait ();
northbound++;
nbSignal = GREEN; sbSignal = RED;
yi
sbArrival () {
if (northbound > 0) busy.wait ();
southbound++;
nbSignal = RED; sbSignal = GREEN;
Y

CS 3204

Example: Synchronizing Traffic

depart (Direction exit) (

1f (exit = NORTH
northbound—-—;
1f (northbound

{

== 0)

while (busy.queue ())
.signal () ;

busy
else if (exit ==
southbound——;
1f (southbound
busy.signal () ;
}
}

SOUTH)

== 0)

CS 3204

{

while (busy.queue ())

Monitor implementation
of a ring buffer

monitor ringBufferMonitor;
var ringBuffer: array[0..slots-1] of stuff;
slotInUse: 0O..slots;
nextSlotToFill: 0..slots-1;
nextSlotToEmpty: O..slots-1;
ringBufferHasData, ringBufferHasSpace: condition;

procedure fillASlot (slotData: stuff);

begin
if (slotInUse = slots) then wait (ringBufferHasSpace);
ringBuffer[nextSlotToFill] = slotData;
slotInUse = slotInUse + 1;
nextSlotToFill = (nextSlotToFill+1l) MOD slots;
signal (ringBufferHasData) ;

end;

CS 3204

Monitor implementation
of a ring buffer...

procedure emptyASlot (var slotData: stuff);

begin

end;

begin

end.

if (slotInUse = 0) then wait (ringBufferHasData);
slotData = ringBuffer[nextSlotToEmpty];
slotInUse = slotInUse - 1;

nextSlotToEmpty = (nextSlotToEmpty-1) MOD slots;

signal (ringBufferSpace);

slotInUSe = 0;
nextSlotToFill = 0O;

nextSlotToEmpty = 0;

CS 3204

